A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment

Vashisht R, Patel A, Dahm L, Han C, Medders KE, Mowers R et al (2023) Second-line Pharmaceutical treatments for patients with type 2 diabetes. JAMA Netw Open 6(10):e2336613

Article  PubMed  PubMed Central  Google Scholar 

Godinho R, Mega C, Teixeira-de-Lemos E, Carvalho E, Teixeira F, Fernandes R et al (2015) The place of Dipeptidyl Peptidase-4 inhibitors in type 2 diabetes therapeutics: a me too or the Special one antidiabetic class? J Diabetes Res 2015:806979

Article  PubMed  PubMed Central  Google Scholar 

Stoian AP, Sachinidis A, Stoica RA, Nikolic D, Patti AM, Rizvi AA (2020) The efficacy and safety of dipeptidyl peptidase-4 inhibitors compared to other oral glucose-lowering medications in the treatment of type 2 diabetes. Metabolism 109:154295

Article  CAS  PubMed  Google Scholar 

Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Göke R, Göke B, Thole H et al (1995) Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 58(3):149–156

Article  CAS  PubMed  Google Scholar 

Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17(6):819–837

Article  CAS  PubMed  Google Scholar 

Terrell JM, Jacobs TF (2024) Alogliptin. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2024. StatPearls Publishing LLC.

TGA, AusPAR Alogliptin (as benzoate) 2014 [Available from: https://www.tga.gov.au/sites/default/files/auspar-alogliptin-benzoate-140109.pdf

FDA NESINA (alogliptin) tablets 2013 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022271s000lbl.pdf

Christopher R, Covington P, Davenport M, Fleck P, Mekki QA, Wann ER et al (2008) Pharmacokinetics, pharmacodynamics, and tolerability of single increasing doses of the dipeptidyl peptidase-4 inhibitor alogliptin in healthy male subjects. Clin Ther 30(3):513–527

Article  CAS  PubMed  Google Scholar 

KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease (2007) Am J Kidney Dis 49(2 Suppl 2):S12–154

Davis TM (2014) Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment. Diabetes Obes Metab 16(10):891–899

Article  CAS  PubMed  Google Scholar 

Wu N, An G (2024) A quantitative systems Pharmacology Model of the Incretin hormones GIP and GLP1, Glucagon, glucose, insulin, and the small molecule DPP-4 inhibitor, Linagliptin. J Pharm Sci 113(1):278–289

Article  CAS  PubMed  Google Scholar 

Balazki P, Schaller S, Eissing T, Lehr TA, Physiologically-Based (2020) Quantitative systems Pharmacology Model of the Incretin hormones GLP-1 and GIP and the DPP4 inhibitor sitagliptin. CPT Pharmacometrics Syst Pharmacol 9(6):353–362

Landersdorfer CB, He YL, Jusko WJ (2012) Mechanism-based population modelling of the effects of vildagliptin on GLP-1, glucose and insulin in patients with type 2 diabetes. Br J Clin Pharmacol 73(3):373–390

Article  CAS  PubMed  Google Scholar 

Bosch R, Petrone M, Arends R, Vicini P, Sijbrands EJG, Hoefman S et al (2022) A novel integrated QSP model of in vivo human glucose regulation to support the development of a glucagon/GLP-1 dual agonist. CPT Pharmacometrics Syst Pharmacol 11(3):302–317

Article  CAS  PubMed  Google Scholar 

Bosch R, Petrone M, Arends R, Vicini P, Sijbrands EJG, Hoefman S et al (2024) Characterisation of cotadutide’s dual GLP-1/glucagon receptor agonistic effects on glycaemic control using an in vivo human glucose regulation quantitative systems pharmacology model. Br J Pharmacol 181(12):1874–1885

Shen C, Yang H, Shao W, Zheng L, Zhang W, Xie H et al (2024) Physiologically based pharmacokinetic modeling to unravel the drug-gene interactions of Venlafaxine: based on activity score-dependent metabolism by CYP2D6 and CYP2C19 polymorphisms. Pharm Res 41(4):731–749

Abdel-Ghany MF, Ayad MF, Tadros MM (2017) Enhanced LC-MS/MS analysis of alogliptin and pioglitazone in human plasma: Applied to a preliminary pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 1058:93–101

Article  CAS  PubMed  Google Scholar 

Kelani KM, Rezk MR, Badran OM, Elghobashy MR (2019) Determination of pioglitazone, its metabolite and alogliptin in human plasma by a novel LC-MS/MS method; application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 1132:121803

Article  CAS  PubMed  Google Scholar 

Dudkowski C, Tsai M, Liu J, Zhao Z, Schmidt E, Xie J (2017) The pharmacokinetics and pharmacodynamics of alogliptin in children, adolescents, and adults with type 2 diabetes mellitus. Eur J Clin Pharmacol 73(3):279–288

Article  CAS  PubMed  Google Scholar 

Eliasson B, Möller-Goede D, Eeg-Olofsson K, Wilson C, Cederholm J, Fleck P et al (2012) Lowering of postprandial lipids in individuals with type 2 diabetes treated with alogliptin and/or pioglitazone: a randomised double-blind placebo-controlled study. Diabetologia 55(4):915–925

Article  CAS  PubMed  Google Scholar 

Noda Y, Miyoshi T, Oe H, Ohno Y, Nakamura K, Toh N et al (2013) Alogliptin ameliorates postprandial lipemia and postprandial endothelial dysfunction in non-diabetic subjects: a preliminary report. Cardiovasc Diabetol 12:8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Liu Y, Liu H, Li H, Yang J, Hu P et al (2021) Dipeptidyl-Peptidase-IV inhibitors, Imigliptin and Alogliptin, improve Beta-cell function in type 2 diabetes. Front Endocrinol (Lausanne) 12:694390

Article  PubMed  Google Scholar 

Willmann S, Lippert J, Schmitt W (2005) From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Metab Toxicol 1(1):159–168

Article  CAS  PubMed  Google Scholar 

Rodrigues AD (1999) Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 57(5):465–480

CAS  PubMed  Google Scholar 

Røge RM, Bagger JI, Alskär O, Kristensen NR, Klim S, Holst JJ et al (2017) Mathematical Modelling of glucose-dependent Insulinotropic polypeptide and glucagon-like Peptide-1 following ingestion of glucose. Basic Clin Pharmacol Toxicol 121(4):290–297

Article  PubMed  Google Scholar 

Jauslin PM, Frey N, Karlsson MO (2011) Modeling of 24-hour glucose and insulin profiles of patients with type 2 diabetes. J Clin Pharmacol 51(2):153–164

Article  CAS  PubMed  Google Scholar 

Shen C, Liang D, Wang X, Shao W, Geng K, Wang X et al (2022) Predictive performance and verification of physiologically based pharmacokinetic model of propylthiouracil. Front Pharmacol 13:1013432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willmann S, Thelen K, Lippert J (2012) Integration of dissolution into physiologically-based pharmacokinetic models III: PK-Sim®. J Pharm Pharmacol 64(7):997–1007

Article  CAS  PubMed  Google Scholar 

Li J, Guo HF, Liu C, Zhong Z, Liu L, Liu XD (2015) Prediction of drug disposition in diabetic patients by means of a physiologically based pharmacokinetic model. Clin Pharmacokinet 54(2):179–193

Article  CAS  PubMed  Google Scholar 

Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252

Article  CAS  PubMed  Google Scholar 

Sarashina A, Chiba K, Tatami S, Kato Y (2020) Physiologically based pharmacokinetic model of the DPP-4 inhibitor linagliptin to describe its nonlinear pharmacokinetics in humans. J Pharm Sci 109(7):2336–2344

Article  CAS  PubMed  Google Scholar 

Wu N, An G (2020) Incorporating pharmacological target-mediated Drug Disposition (TMDD) in a whole-body physiologically based pharmacokinetic (PBPK) model of Linagliptin in Rat and Scale-up to Human. Aaps j 22(6):125

Article  CAS  PubMed  Google Scholar 

Landersdorfer CB, He YL, Jusko WJ (2012) Mechanism-based population pharmacokinetic modelling in diabetes: vildagliptin as a tight binding inhibitor and substrate of dipeptidyl peptidase IV. Br J Clin Pharmacol 73(3):391–401

Article  CAS  PubMed  Google Scholar 

Holst JJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK (2017) Glucagon and amino acids are linked in a mutual feedback cycle: the Liver-α-Cell Axis. Diabetes 66(2):235–240

Article  CAS  PubMed  Google Scholar 

Malik PRV, Yeung CHT, Ismaeil S, Advani U, Djie S, Edginton AN (2020) A physiological Approach to Pharmacokinetics in chronic kidney disease. J Clin Pharmacol 60(Suppl 1):S52–s62

CAS 

留言 (0)

沒有登入
gif