Application of model-informed drug development (MIDD) for dose selection in regulatory submissions for drug approval in Japan

Ministry of Health, Labour and Welfare (2024). Statistics on Pharmaceutical and Medical Device Industry Cited from the Japan Pharmaceutical Manufacturers Association DATA book. Japan Pharmaceutical Manufacturers Association. https://www.jpma.or.jp/news_room/issue/databook/en/rs40ob00000015ux-att/DATABOOK2024_E_ALL.pdf. Accessed May 07, 2024.

Wouters OJ, McKee M, Luyten J (2020) Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323:844–853

Article  PubMed  PubMed Central  Google Scholar 

Brown DG, Wobst HJ, Kapoor A, Kenna LA, Southall N (2022) Clinical development times for innovative drugs. Nat Rev Drug Discov 21:793–794

Article  CAS  PubMed  PubMed Central  Google Scholar 

EFPIA MID3 Workgroup (2016) Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacometr Syst Pharmacol 5:93–122

Miller R, Ewy W, Corrigan BW, Ouellet D, Hermann D, Kowalski KG et al (2005) How modeling and simulation have enhanced decision making in new drug development. J Pharmacokinet Pharmacodyn 32:185–197

Article  PubMed  Google Scholar 

Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA et al (2007) Model-based drug development. Clin Pharmacol Ther 82:21–32

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhu H, Madabushi R, Liu Q, Huang SM, Zineh I (2019) Model-informed drug development: current US regulatory practice and future considerations. Clin Pharmacol Ther 105:899–911

Article  PubMed  Google Scholar 

US Food and Drug Administration (FDA) (2023) Model-informed drug development paired meeting program. https://www.fda.gov/drugs/development-resources/model-informed-drug-development-paired-meeting-program. Accessed December 12, 2023.

Madabushi R, Seo P, Zhao L, Tegenge M, Zhu H (2022) Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm Res 39:1669–1680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ministry of Health, Labour and Welfare (2019) Guideline on population pharmacokinetic and pharmacodynamic analysis. https://www.pmda.go.jp/files/000235608.pdf. Accessed May 27, 2024.

Ministry of Health, Labour and Welfare (2020) Guideline for exposure-response analysis of drugs. https://www.pmda.go.jp/files/000235605.pdf. Accessed May 27, 2024.

Ministry of Health, Labour and Welfare (2020) Guidelines for analysis reports involving physiologically based pharmacokinetic model. https://www.pmda.go.jp/files/000239317.pdf. Accessed May 27, 2024.

Kijima S, Ochiai Y, Ishiguro A (2020) Meeting report. Meeting report: PMDA public workshop on pharmacometrics at Japan. CPT Pharmacometrics Syst Pharmacol 9:550–552

Article  CAS  PubMed  PubMed Central  Google Scholar 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (2022) Considerations with Respect to Future MIDD Related Guidelines. https://admin.ich.org/sites/default/files/2022-05/ICH_MIDD_Roadmap_2022_0503.pdf. Accessed May 27, 2024.

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (2022) Final Concept Paper M15: Model-Informed Drug Development General Principles Guideline. https://database.ich.org/sites/default/files/ICH_M15_ConceptPaper_Final_2022_1102.pdf. Accessed May 27, 2024.

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (2022) Final Business Plan, Model-Informed Drug Development General Principles Guideline. https://database.ich.org/sites/default/files/ICH_M15_BusinessPlan_Final_2022_1027.pdf. Accessed May 27, 2024.

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (2024) Work plan, model-informed drug development general principles guideline. https://database.ich.org/sites/default/files/ICH_M15_EWG_WorkPlan_2024_0315.pdf. Accessed May 27, 2024.

Singh RSP, Toussi SS, Hackman F, Chan PL, Rao R, Allen R et al (2022) Innovative randomized Phase I study and dosing regimen selection to accelerate and inform pivotal COVID-19 trial of nirmatrelvir. Clin Pharmacol Ther 112:101–111

Article  CAS  PubMed  Google Scholar 

Bi Y, Liu J, Li L, Yu J, Bhattaram A, Bewernitz M et al (2019) Role of model-informed drug development in pediatric drug development, regulatory evaluation, and labeling. J Clin Pharmacol 59(Supplement 1):S104–S111

CAS  PubMed  Google Scholar 

Haber G, Conway KM, Paramsothy P, Roy A, Rogers H, Ling X et al (2021) Association of genetic mutations and loss of ambulation in childhood-onset dystrophinopathy. Muscle Nerve 63:181–191

Article  CAS  PubMed  Google Scholar 

Kijima S, Yoshida S, Ochiai Y (2022) Activity and perspective on quantitative modeling and simulation in Japan: Update from the Pharmaceuticals and Medical Devices Agency. CPT Pharmacometrics Syst Pharmacol 11:1552–1555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaddi CD, Niesner B, Baek R, Jasper P, Pappas J, Tolsma J et al (2018) Quantitative systems pharmacology modeling of acid sphingomyelinase deficiency and the enzyme replacement therapy Olipudase Alfa is an innovative Tool for linking pathophysiology and pharmacology. CPT Pharmacometrics Syst Pharmacol 7:442–452

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadkar K, Kirouac D, Parrott N, Ramanujan S (2016) Quantitative systems pharmacology: a promising approach for translational pharmacology. Drug Discov Today Technol 21–22:57–65

Article  PubMed  Google Scholar 

Ramakrishnan V, Friedrich C, Witt C, Sheehan R, Pryor M, Atwal JK et al (2023) Quantitative systems pharmacology model of the amyloid pathway in Alzheimer’s disease: insights into the therapeutic mechanisms of clinical candidates. CPT Pharmacometrics Syst Pharmacol 12:62–73

Article  CAS  PubMed  Google Scholar 

Kuemmel C, Yang Y, Zhang X, Florian J, Zhu H, Tegenge M et al (2020) Consideration of a credibility assessment framework in model-informed drug development: Potential application to physiologically-based pharmacokinetic modeling and simulation. CPT Pharmacometrics Syst Pharmacol 9:21–28

Article  CAS  PubMed  Google Scholar 

Musuamba FT, Skottheim Rusten IS, Lesage R, Russo G, Bursi R, Emili L et al (2021) Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility. CPT Pharmacometrics Syst Pharmacol 10:804–825

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rusten IS, Musuamba FT (2021) Scientific and regulatory evaluation of empirical pharmacometric models: an application of the risk informed credibility assessment framework. CPT Pharmacometr Syst Pharmacol 10:1281–1296

Article  Google Scholar 

Kerbusch T (2011) Phase 2b dose selection, leveraging comparator data through multidisciplinary modeling & simulation. EMA-EFPIA Modelling and Simulation Workshop, London

Patsalos PN, Fröscher W, Pisani F, van Rijn CM (2002) The importance of drug interactions in epilepsy therapy. Epilepsia 43:365–385

Article  CAS  PubMed  Google Scholar 

Hoffelt C, Gross T (2016) A review of significant pharmacokinetic drug interactions with antidepressants and their management. Ment Health Clin 6:35–41

Article  PubMed  PubMed Central  Google Scholar 

US Food and Drug Administration (FDA) (2018) Burosumab, Multidiscipline review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761068Orig1s000MultidisciplineR.pdf. Accessed December 13, 2023.

US Food and Drug Administration (FDA) (2021) Fosdenopterin, Integrated review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214018Orig1s000IntegratedR.pdf. Accessed December 13, 2023.

Perrone DR, Moukassi MS, Romero K, Czerwiec FS, Chapman AB, Gitomer BY et al (2017) A drug development tool for trial enrichment in patients with autosomal dominant polycystic kidney disease. Kidney Int Rep 21:451–460

Article  Google Scholar 

Li RJ, Ma L, Li F, Li L, Bi Y, Yuan Y et al (2022) Model-informed approach supporting drug development and regulatory evaluation for rare diseases. J Clin Pharmacol 62(Supplement 2):S27-37

CAS  PubMed  Google Scholar 

Mitra A, Lee JB, Steinbach D, Hazra A, Krishna R (2023) Rare oncology therapeutics: review of clinical pharmacology package of drug approvals (2019–2023) by US FDA, best practices and recommendations. J Pharmacokinet Pharmacodyn 50:475–493

Article  PubMed  Google Scholar 

Tanaka M, Idei M, Sakaguchi H, Kato R, Sato D, Sawanobori K et al (2021) Evolving landscape of new drug approval in Japan and lags from international birth dates: retrospective regulatory analysis. Clin Pharmacol Ther 109:1265–1273

Article  PubMed  Google Scholar 

International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH) (2018). Ethnic factors in the acceptance of foreign clinical data E5 (R1). https://database.ich.org/sites/default/files/E5_R1__Guideline.pdf. Accessed May 27, 2024.

International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH) (2017) General principles for the planning and design of multi-regional clinical trials E17. https://database.ich.org/sites/default/files/E17EWG_Step4_2017_1116.pdf. Accessed May 27, 2024.

Iwasa T, de Almeida C, Fauchet F, Winchell GA, de Greef R, Hasegawa C et al (2023) Model-informed dose justifications of posaconazole in Japanese patients for prophylaxis and treatment against fungal infection. J Clin Pharmacol 63:421–434

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif