Hindricks G, Potpara T, Dagres N, Bax JJ, Boriani G, Dan GA, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42:373–498.
Lankveld T, Zeemering S, Scherr D, Kuklik P, Hoffmann BA, Willems S et al. Atrial fibrillation complexity parameters derived from Surface ECGs Predict Procedural Outcome and Long-Term Follow-Up of stepwise catheter ablation for Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2016;9(2).
Bergquist J, Rupp L, Zenger B, Brundage J, Busatto A, MacLeod RS. Body surface potential mapping: contemporary applications and future perspectives. Hearts. 2021;2(4):514–42.
Bonizzi P, Zeemering S, Karel JMH, Di Marco LY, Uldry L, Van Zaen J, et al. Systematic comparison of non-invasive measures for the assessment of atrial fibrillation complexity: a step forward towards standardization of atrial fibrillation electrogram analysis. Europace. 2014;17(2):318–25.
Meo M, Pambrun T, Derval N, Dumas-Pomier C, Puyo S, Duchâteau J et al. Noninvasive Assessment of Atrial Fibrillation Complexity in relation to ablation characteristics and outcome. Front Physiol. 2018;9(929).
Lankveld T, De Vos CB, Limantoro I, Zeemering S, Dudink E, Crijns HJ, et al. Systematic analysis of ECG predictors of sinus rhythm maintenance after electrical cardioversion for persistent atrial fibrillation. Hear Rhythm. 2016;13(5):1020–7.
Guillem MS, Climent AM, Millet J, Arenal Á, Fernández-Avilés F, Jalife J, et al. Noninvasive localization of maximal frequency sites of Atrial Fibrillation by Body Surface potential mapping. Circ Arrhythm Electrophysiol. 2013;6(2):294–301.
Article PubMed PubMed Central Google Scholar
Bonizzi P, Meste O, Zeemering S, Karel J, Lankveld T, Crijns H, et al. A novel framework for noninvasive analysis of short-term atrial activity dynamics during persistent atrial fibrillation. Med Biol Eng Comput. 2020;58(9):1933–45.
Article PubMed PubMed Central Google Scholar
Dhillon GS, Honarbakhsh S, Graham A, Abbass H, Welch S, Daw H, et al. ECG-I phenotyping of persistent AF based on driver burden and distribution to predict response to pulmonary vein isolation (PHENOTYPE-AF). J Cardiovasc Electrophysiol. 2022;33(11):2263–73.
Molero R, Soler Torro JM, Martínez Alzamora N, Climent M, Guillem A. Higher reproducibility of phase derived metrics from electrocardiographic imaging during atrial fibrillation in patients remaining in sinus rhythm after pulmonary vein isolation. Comput Biol Med. 2021;139:104934.
Article CAS PubMed Google Scholar
Fambuena-Santos C, Hernández-Romero I, Molero R, Atienza F, Climent AM, Guillem MS. AF driver detection in pulmonary vein area by electropcardiographic imaging: relation with a favorable outcome of pulmonary vein isolation. Front Physiol. 2023;14:1–11.
Rodrigo M, Climent AM, Hernández-Romero I, Liberos A, Baykaner T, Rogers AJ, et al. Non-invasive Assessment of Complexity of Atrial Fibrillation: correlation with contact mapping and impact of ablation. Circ Arrhythm Electrophysiol. 2020;13:e007700.
Article PubMed PubMed Central Google Scholar
Rodrigo M, Waddell K, Magee S, Rogers AJ, Alhusseini M, Hernandez-Romero I, et al. Non-invasive spatial mapping of frequencies in Atrial Fibrillation: correlation with contact mapping. Front Physiol. 2021;11:611266.
Article PubMed PubMed Central Google Scholar
Lim HS, Hocini M, Dubois R, Denis A, Derval N, Zellerhoff S, et al. Complexity and distribution of drivers in relation to duration of Persistent Atrial Fibrillation. J Am Coll Cardiol. 2017;69:1257–69.
Guillem MS, Climent AM, Rodrigo M, Fernández-Avilés F, Atienza F, Berenfeld O. Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovasc Res. 2016;109(4):480–92.
Article CAS PubMed PubMed Central Google Scholar
Bizhanov KA, Аbzaliyev KB, Baimbetov AK, Sarsenbayeva AB, Lyan E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J Cardiovasc Electrophysiol. 2022;34:153–65.
Remondino F. 3-D reconstruction of static human body shape from image sequence. Comput Vis Image Underst. 2004;93:65–85.
Molero R, González-Ascaso A, Climent AM, Guillem MS. Robustness of imageless electrocardiographic imaging against uncertainty in atrial morphology and location. J Electrocardiol. 2023;77:58–61.
Schmidt R, Singh K, Meshmixer. An interface for rapid mesh composition. In: ACM SIGGRAPH 2010 Talks, SIGGRAPH ’10. 2010.
Castells F, Mora C, Rieta JJ, Moratal-Pérez D, Millet J. Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Med Biol Eng Comput. 2005;43(5):557–60.
Article CAS PubMed Google Scholar
Molero R, Martínez-Pérez M, Herrero-Martín C, Reventós-Presmanes J, Roca-Luque I, Mont L, et al. Improving electrocardiographic imaging solutions: a comprehensive study on regularization parameter selection in L-curve optimization in the Atria. Comput Biol Med. 2024;182:109141.
Hernández-Romero I, Molero R, Fambuena-Santos C, Herrero-Martín C, Climent AM, Guillem MS. Electrocardiographic imaging in the atria. Med Biol Eng Comput. 2022;61:879–96.
Article PubMed PubMed Central Google Scholar
Schwaderlapp G, Oesterlein T, Dössel O, Armin L, Schmitt C, Lenis G. Definition, estimation and limitations of the dominant frequency in intracardiac electrograms. Curr Dir Biomed Eng. 2017;3:95–8.
Rodrigo M, Climent AM, Liberos A, Fernández-Avilés F, Berenfeld O, Atienza F, et al. Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: a computational study. Hear Rhythm. 2017;14(8):1224–33.
Alcaraz R, Rieta JJ. A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomed Signal Process Control. 2010;5(1):1–14.
Alcaraz R, Sandberg F, Sörnmo L, Rieta JJ. Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings. IEEE Trans Biomed Eng. 2011;58(5):1441–9.
Meste O, Zeemering S, Karel J, Lankveld T, Schotten U, et al. Noninvasive recurrence quantification analysis predicts atrial fibrillation recurrence in persistent patients undergoing electrical cardioversion. Comput Cardiol (2010). 2016;43:677–80.
Molero R, Hernández-Romero I, Climent AM, Guillem MS. Filtering strategies of electrocardiographic imaging signals for stratification of atrial fibrillation patients. Biomed Signal Process Control. 2023;81:104438.
Rodrigo M, Climent AM, Liberos A, Fernández-Avilés F, Berenfeld O, Atienza F, et al. Technical considerations on phase mapping for identification of Atrial Reentrant Activity in Direct- and inverse-computed Electrograms. Circ Arrhythmia Electrophysiol. 2017;10:e005008.
Luongo G, Azzolin L, Schuler S, Rivolta MW, Almeida TP, Martínez JP, et al. Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG. Cardiovasc Digit Heal J. 2021;2:123–36.
Rodrigo M, Guillem MS, Climent AM, Pedrón-Torrecilla J, Liberos A, Millet J, et al. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Hear Rhythm. 2014;11(9):1584–91.
Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol. 2011;58(21):2225–32.
Cochet H, Dubois R, Yamashita S, Al Jefairi N, Berte B, Sellal JM, et al. Relationship between fibrosis detected on late gadolinium-enhanced Cardiac magnetic resonance and re-entrant activity assessed with Electrocardiographic Imaging in Human Persistent Atrial Fibrillation. JACC Clin Electrophysiol. 2018;4(1):17–29.
Vijayakumar R, Faddis MN, Cuculich PS, Rudy Y. Mechanisms of persistent atrial fibrillation and recurrences within 12 months post-ablation: non-invasive mapping with electrocardiographic imaging. Front Cardiovasc Med. 2022;9:1052195.
留言 (0)