Barroso WKS, Rodrigues CIS, Borbolotto LA, Mota-Gomes MA, Brandão AA, Feitosa AD, et al. Brazilian guidelines of hypertension—2020. Arq Bras Cardiol. 2021;116:516–658.
Article PubMed PubMed Central Google Scholar
Yugar-Toledo JC, Júnior HM, Gus M, Rosito GB, Scala LC, Muxfeldt ES, et al. Posicionamento brasileiro sobre hipertensão arterial resistente—2020. Arq Bras Cardiol. 2020;114:576–96.
PubMed PubMed Central Google Scholar
Reyes KG, Rader F. Long-term safety and antihypertensive effects of renal denervation: current insights. Integr Blood Press control. 2023;16:59–70.
Article PubMed PubMed Central Google Scholar
Camafort M, Ihm SH, Ruilope LM. Renal denervation for the treatment of hypertension and kidney disease. Curr Opin Nephrol Hypertens. 2023;32:544–50.
Article CAS PubMed Google Scholar
Lauder L, Azizi M, Kirtane AJ, Bohm M, Mahfoud F. Device-based therapies for arterial hypertension. Nat Rev Cardiol. 2020;17:614–28.
Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Bohm M, et al. Renal denervation update from the international sympathetic nervous system summit: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73:3006–17.
Article PubMed PubMed Central Google Scholar
Yamazaki D, Konishi Y, Kitada K. Effects of renal denervation on the kidney: albuminuria, proteinuria, and renal function. Hypertens Res. 2024;47:2659–64.
Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey J, Gray SR, et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat med. 2019;25:1753–60.
Article CAS PubMed PubMed Central Google Scholar
Chazot R, Botelho-Neves E, Mariat C, Frésard A, Cavalier E, Lucht F, et al. Cystatin C and urine albumin to creatinine ratio predict 5-year mortality and cardiovascular events in people living with HIV. J Infect Dis. 2021;223:885–92.
Article CAS PubMed Google Scholar
Park S, Lee S, Lee A, Paek JH, Chin HJ, Na KY, et al. Preoperative dipstick albuminuria and other urine abnormalities predict acute kidney injury and patient outcomes. Surgery. 2018;163:1178–85.
Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol. 2011;22:1353–64.
Article PubMed PubMed Central Google Scholar
Toblli JE, Bevione P, Gennaro FD, Madalena L, Cao G, Angerosa M. Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol. 2012;2012:546039.
Article PubMed PubMed Central Google Scholar
Weisz OA. Endocytic adaptation to functional demand by the kidney proximal tubule. J Physiol. 2021;599:3437–46.
Article CAS PubMed Google Scholar
Edwards A, Long KR, Baty CJ, Shipman KE, Weisz OA. Modelling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule. J Physiol. 2022;600:1933–52.
Article CAS PubMed Google Scholar
Rbaibi Y, Long KR, Shipman KE, Ren Q, Baty CJ, Kashlan OB, et al. Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells. Mol Biol Cell. 2023;34:ar74.
Article PubMed PubMed Central Google Scholar
Long KR, Rbaibi Y, Kashlan OB, Weisz OA. Receptor-associated protein impairs ligand binding to megalin and megalin-dependent endocytic flux in proximal tubule cells. Am J Physiol Ren Physiol. 2023;325:F457–64.
D’Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–25.
Lopes NR, Milanez MI, Martins BS, Veiga AC, Ferreira GR, Gomes GN, et al. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pflüg Arch. 2020;472:325–34.
Dickson LE, Wagner MC, Sandoval RM, Molitoris BA. The proximal tubule and albuminuria: really! J Am Soc Nephrol. 2014;25:443–53.
Article CAS PubMed PubMed Central Google Scholar
Silva-Aguiar RP, Bezerra NC, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, et al. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem. 2018;293:12749–58.
Article CAS PubMed PubMed Central Google Scholar
Ren Q, Weyer K, Rbaibi Y, Long KR, Tan RJ, Nielsen R, et al. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin. Am J Physiol Ren Physiol. 2020;318:F1284–F1294.
Tojo A, Onozato ML, Ha H, Kurihara H, Sakai T, Goto A, et al. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol. 2001;116:269–76.
Article CAS PubMed Google Scholar
Nishi EE, Lopes NR, Gomes GN, Perry JC, Simões-Sato AY, Naffah-Mazzacoratti MG, et al. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res. 2019;42:628–40.
Veiga GL, Nishi EE, Estrela HF, Lincevicius GS, Gomes GN, Simões-Sato AY, et al. Total renal denervation reduces sympathoexcitation to different target organs in a model of chronic kidney disease. Auton Neurosci. 2017;204:81–87.
de Oliveira TL, Lincevicius GS, Shimoura CG, Simões-Sato AY, Garcia ML, Bergamaschi CT, et al. Effects of renal denervation on cardiovascular, metabolic and renal functions in streptozotocin-induced diabetic rats. Life Sci. 2021;278:119534.
Page IH, Heuer GJ. The effect of renal denervation on patients suffering from nephritis. J Clin Investig. 1935;14:443–58.
Article CAS PubMed PubMed Central Google Scholar
Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int. 2006;69:440–9.
Article CAS PubMed Google Scholar
Birn H, Nielsen R, Weyer K. Tubular albumin uptake: is there evidence for a quantitatively important, receptor-independent mechanism? Kidney Int. 2023;104:1069–73.
Article CAS PubMed Google Scholar
Kuwahara S, Saito SA. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes. 2014;4:333–55.
Article PubMed PubMed Central Google Scholar
Perez Bay AE, Schreiner R, Benedicto I, Marzolo MP, Banfelder J, Weinstein AM, et al. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun. 2016;7:11550.
Article CAS PubMed PubMed Central Google Scholar
Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, et al. Proximal tubular expression patterns of megalin and cubilin in proteinuric nephropathies. Kidney Int Rep. 2017;2:721–32.
Article PubMed PubMed Central Google Scholar
Sun Y, Lu X, Danser AHJ. Megalin: a novel determinant of renin-angiotensin system activity in the kidney? Curr Hypertens Rep. 2020;22:30.
Article PubMed PubMed Central Google Scholar
Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. the production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.
留言 (0)