Renal nerves and hypertension contribute to impaired proximal tubule megalin-mediated albumin uptake in renovascular hypertensive rats

Barroso WKS, Rodrigues CIS, Borbolotto LA, Mota-Gomes MA, Brandão AA, Feitosa AD, et al. Brazilian guidelines of hypertension—2020. Arq Bras Cardiol. 2021;116:516–658.

Article  PubMed  PubMed Central  Google Scholar 

Yugar-Toledo JC, Júnior HM, Gus M, Rosito GB, Scala LC, Muxfeldt ES, et al. Posicionamento brasileiro sobre hipertensão arterial resistente—2020. Arq Bras Cardiol. 2020;114:576–96.

PubMed  PubMed Central  Google Scholar 

Reyes KG, Rader F. Long-term safety and antihypertensive effects of renal denervation: current insights. Integr Blood Press control. 2023;16:59–70.

Article  PubMed  PubMed Central  Google Scholar 

Camafort M, Ihm SH, Ruilope LM. Renal denervation for the treatment of hypertension and kidney disease. Curr Opin Nephrol Hypertens. 2023;32:544–50.

Article  CAS  PubMed  Google Scholar 

Lauder L, Azizi M, Kirtane AJ, Bohm M, Mahfoud F. Device-based therapies for arterial hypertension. Nat Rev Cardiol. 2020;17:614–28.

Article  PubMed  Google Scholar 

Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Bohm M, et al. Renal denervation update from the international sympathetic nervous system summit: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73:3006–17.

Article  PubMed  PubMed Central  Google Scholar 

Yamazaki D, Konishi Y, Kitada K. Effects of renal denervation on the kidney: albuminuria, proteinuria, and renal function. Hypertens Res. 2024;47:2659–64.

Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey J, Gray SR, et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat med. 2019;25:1753–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chazot R, Botelho-Neves E, Mariat C, Frésard A, Cavalier E, Lucht F, et al. Cystatin C and urine albumin to creatinine ratio predict 5-year mortality and cardiovascular events in people living with HIV. J Infect Dis. 2021;223:885–92.

Article  CAS  PubMed  Google Scholar 

Park S, Lee S, Lee A, Paek JH, Chin HJ, Na KY, et al. Preoperative dipstick albuminuria and other urine abnormalities predict acute kidney injury and patient outcomes. Surgery. 2018;163:1178–85.

Article  PubMed  Google Scholar 

Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol. 2011;22:1353–64.

Article  PubMed  PubMed Central  Google Scholar 

Toblli JE, Bevione P, Gennaro FD, Madalena L, Cao G, Angerosa M. Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol. 2012;2012:546039.

Article  PubMed  PubMed Central  Google Scholar 

Weisz OA. Endocytic adaptation to functional demand by the kidney proximal tubule. J Physiol. 2021;599:3437–46.

Article  CAS  PubMed  Google Scholar 

Edwards A, Long KR, Baty CJ, Shipman KE, Weisz OA. Modelling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule. J Physiol. 2022;600:1933–52.

Article  CAS  PubMed  Google Scholar 

Rbaibi Y, Long KR, Shipman KE, Ren Q, Baty CJ, Kashlan OB, et al. Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells. Mol Biol Cell. 2023;34:ar74.

Article  PubMed  PubMed Central  Google Scholar 

Long KR, Rbaibi Y, Kashlan OB, Weisz OA. Receptor-associated protein impairs ligand binding to megalin and megalin-dependent endocytic flux in proximal tubule cells. Am J Physiol Ren Physiol. 2023;325:F457–64.

D’Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–25.

Article  PubMed  Google Scholar 

Lopes NR, Milanez MI, Martins BS, Veiga AC, Ferreira GR, Gomes GN, et al. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pflüg Arch. 2020;472:325–34.

Article  CAS  Google Scholar 

Dickson LE, Wagner MC, Sandoval RM, Molitoris BA. The proximal tubule and albuminuria: really! J Am Soc Nephrol. 2014;25:443–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva-Aguiar RP, Bezerra NC, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, et al. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem. 2018;293:12749–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren Q, Weyer K, Rbaibi Y, Long KR, Tan RJ, Nielsen R, et al. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin. Am J Physiol Ren Physiol. 2020;318:F1284–F1294.

Article  CAS  Google Scholar 

Tojo A, Onozato ML, Ha H, Kurihara H, Sakai T, Goto A, et al. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol. 2001;116:269–76.

Article  CAS  PubMed  Google Scholar 

Nishi EE, Lopes NR, Gomes GN, Perry JC, Simões-Sato AY, Naffah-Mazzacoratti MG, et al. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res. 2019;42:628–40.

Article  PubMed  Google Scholar 

Veiga GL, Nishi EE, Estrela HF, Lincevicius GS, Gomes GN, Simões-Sato AY, et al. Total renal denervation reduces sympathoexcitation to different target organs in a model of chronic kidney disease. Auton Neurosci. 2017;204:81–87.

Article  PubMed  Google Scholar 

de Oliveira TL, Lincevicius GS, Shimoura CG, Simões-Sato AY, Garcia ML, Bergamaschi CT, et al. Effects of renal denervation on cardiovascular, metabolic and renal functions in streptozotocin-induced diabetic rats. Life Sci. 2021;278:119534.

Article  PubMed  Google Scholar 

Page IH, Heuer GJ. The effect of renal denervation on patients suffering from nephritis. J Clin Investig. 1935;14:443–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int. 2006;69:440–9.

Article  CAS  PubMed  Google Scholar 

Birn H, Nielsen R, Weyer K. Tubular albumin uptake: is there evidence for a quantitatively important, receptor-independent mechanism? Kidney Int. 2023;104:1069–73.

Article  CAS  PubMed  Google Scholar 

Kuwahara S, Saito SA. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes. 2014;4:333–55.

Article  PubMed  PubMed Central  Google Scholar 

Perez Bay AE, Schreiner R, Benedicto I, Marzolo MP, Banfelder J, Weinstein AM, et al. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun. 2016;7:11550.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, et al. Proximal tubular expression patterns of megalin and cubilin in proteinuric nephropathies. Kidney Int Rep. 2017;2:721–32.

Article  PubMed  PubMed Central  Google Scholar 

Sun Y, Lu X, Danser AHJ. Megalin: a novel determinant of renin-angiotensin system activity in the kidney? Curr Hypertens Rep. 2020;22:30.

Article  PubMed  PubMed Central  Google Scholar 

Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. the production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif