Learning from history to improve the performance of blood purification devices and dialysis membranes: from engineering points of view

Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood by means of dialysis. Trans Assoc Am Phys. 1913;2:51–4.

Google Scholar 

Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood of living animals by dialysis. J Pharmacol Exp Ther. 1914;5:275–316.

CAS  Google Scholar 

Colton CK, Permeability and transport studies in batch and flow dialyzers with applications to hemodialysis (Ph.D thesis) MIT, Cambridge, Mass. 1969.

Colton CK, Lowrie EG. Hemodialysis: physical principles and technical considerations. In: Brenner BM, Rector FC Jr, editors. The kidney, vol. 2. 2nd ed. Philadelphia: WB Saunders Company; 1981. p. 2425–89.

Google Scholar 

Babb AL, Popovich RP, Christopher TG, et al. The genesis of the square meter hour hypothesis. Trans Am Soc Artif Intern Organs. 1971;17:81–91.

CAS  PubMed  Google Scholar 

Babb AL, Farrell PC, Uvelli DA, et al. Hemodialyzer evaluation by examination of solute molecular spectra. Trans Am Soc Artif Intern Organs. 1972;18:98–106.

Article  CAS  PubMed  Google Scholar 

Gejyo F, Yamada T, Odani S, et al. A new form of amyloid protein associated with hemodialysis was identified as β2-microglobulin. Biochem Biophys Res Commun. 1985;129:701–6.

Article  CAS  PubMed  Google Scholar 

Kolff WJ, Berk HT, ter Welle M, et al. The artificial kidney: a dialyzer with a great area. JASN. 1997;8:1959–65.

Article  CAS  PubMed  Google Scholar 

Sakai K. Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transplant. 1989;4:73–7.

Google Scholar 

Miyasaka T, Sakai K. Application of mathematical analysis on dialysis. J Artif Organs. 2023;26:1–11.

Article  PubMed  Google Scholar 

Klein E, Holland F, Lebeouf A, et al. Transport and mechanical properties of hemodialysis hollow fibers. J Membr Sci. 1976;1:371–96.

Article  CAS  Google Scholar 

Yamazaki K, Matsuda M, Yamamoto K, et al. Internal and surface structure characterization of cellulose triacetate hollow-fiber dialysis membrane. J Membr Sci. 2011;368:34–40.

Article  CAS  Google Scholar 

Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes—a contribution to the pore theory of capillary permeability. Am J Physiol. 1951;167:13–46.

Article  CAS  PubMed  Google Scholar 

Verniory A, Dubois R, Decoodt P, et al. Measurement of the permeability of biological membranes.—Application to the glomerular wall. J Gen Physiol. 1973;62:489–507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakai K, Takesawa S, Mimura R, et al. Structural analysis of hollow fiber dialysis membranes for clinical use. J Chem Eng Jpn. 1987;20:351–6.

Article  CAS  Google Scholar 

Sakai K, Takesawa S, Mimura R, et al. Determination of pore radius of hollow-fiber dialysis memmbranes using tritium-labeled water. J Chem Eng Jpn. 1988;21:207–10.

Article  CAS  Google Scholar 

Sakai K, Ozawa K, Mimura R, et al. Comparison of methods for characterizing microporous membranes for plasma separation. J Membr Sci. 1987;32:3–17.

Article  CAS  Google Scholar 

Hayama M, Kohori F, Sakai K. AFM observation of small surface pores of hollow-fiber dialysis membrane using highly sharpened probe. J Membr Sci. 2002;97:243–9.

Article  Google Scholar 

Yamamoto K, Hayama M, Matsuda M, et al. Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model. J Membr Sci. 2007;287:88–93.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif