The role of mitophagy-related genes in prognosis and immunotherapy of cutaneous melanoma: a comprehensive analysis based on single-cell RNA sequencing and machine learning

Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11):1366–79. https://doi.org/10.1080/15384047.2019.1640032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. https://doi.org/10.3322/caac.21820.

Article  PubMed  Google Scholar 

Ertekin SS, Podlipnik S, Riquelme-Mc Loughlin C, Barreiro-Capurro A, Arance A, Carrera C, et al. Initial stage of cutaneous primary melanoma plays a key role in the pattern and timing of disease recurrence. Acta Derm Venereol. 2021;101(7):adv00502. https://doi.org/10.2340/00015555-3832.

Article  PubMed  Google Scholar 

Zhou C, Louwman M, Wakkee M, van der Veldt A, Grünhagen D, Verhoef C, et al. Primary melanoma characteristics of metastatic disease: a nationwide cancer registry study. Cancers (Basel). 2021;13(17):4431. https://doi.org/10.3390/cancers13174431.

Article  PubMed  Google Scholar 

Sussman TA, Ott PA. Adjuvant immunotherapy for melanoma patients: progress and opportunities. ESMO Open. 2024;9(5):102962. https://doi.org/10.1016/j.esmoop.2024.102962.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, et al. Cell immunotherapy against melanoma: clinical trials review. Int J Mol Sci. 2023;24(3):2413. https://doi.org/10.3390/ijms24032413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long GV, Menzies AM, Scolyer RA. Neoadjuvant checkpoint immunotherapy and melanoma: the time is now. J Clin Oncol. 2023;41(17):3236–48. https://doi.org/10.1200/jco.22.02575.

Article  CAS  PubMed  Google Scholar 

Lazaroff J, Bolotin D. Targeted therapy and immunotherapy in melanoma. Dermatol Clin. 2023;41(1):65–77. https://doi.org/10.1016/j.det.2022.07.007.

Article  CAS  PubMed  Google Scholar 

Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736–66. https://doi.org/10.7150/thno.79876.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picca A, Faitg J, Auwerx J, Ferrucci L, D’Amico D. Mitophagy in human health, ageing and disease. Nat Metab. 2023;5(12):2047–61. https://doi.org/10.1038/s42255-023-00930-8.

Article  PubMed  Google Scholar 

Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, et al. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 2023;8(1):304. https://doi.org/10.1038/s41392-023-01503-7.

Article  PubMed  PubMed Central  Google Scholar 

Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Patra S, Behera BP, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol. 2020;66:45–58. https://doi.org/10.1016/j.semcancer.2019.07.015.

Article  CAS  PubMed  Google Scholar 

Song C, Pan S, Zhang J, Li N, Geng Q. Mitophagy: a novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 2022;55(12):e13327. https://doi.org/10.1111/cpr.13327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao J, Wang J, Xu Y, Guo Q, Sun Y, Liu J, et al. CDK9 inhibition blocks the initiation of PINK1-PRKN-mediated mitophagy by regulating the SIRT1-FOXO3-BNIP3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma. Autophagy. 2022;18(8):1879–97. https://doi.org/10.1080/15548627.2021.2007027.

Article  CAS  PubMed  Google Scholar 

Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy. 2021;17(10):3011–29. https://doi.org/10.1080/15548627.2020.1850609.

Article  CAS  PubMed  Google Scholar 

Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan X, et al. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy. Signal Transduct Target Ther. 2022;7(1):388. https://doi.org/10.1038/s41392-022-01253-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Yi X, Guo S, Wang S, Ma J, Zhao T, et al. The XBP1-MARCH5-MFN2 axis confers endoplasmic reticulum stress resistance by coordinating mitochondrial fission and mitophagy in melanoma. J Invest Dermatol. 2021;141(12):2932-43.e12. https://doi.org/10.1016/j.jid.2021.03.031.

Article  CAS  PubMed  Google Scholar 

Vara-Pérez M, Rossi M, Van den Haute C, Maes H, Sassano ML, Venkataramani V, et al. BNIP3 promotes HIF-1α-driven melanoma growth by curbing intracellular iron homeostasis. EMBO J. 2021;40(10):e106214. https://doi.org/10.15252/embj.2020106214.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Ding J, Yue H, Xu B, Sodhi A, Xue K, et al. Hypoxia-induced BNIP3 facilitates the progression and metastasis of uveal melanoma by driving metabolic reprogramming. Autophagy. 2024;21:191–209. https://doi.org/10.1080/15548627.2024.2395142.

Article  CAS  PubMed  Google Scholar 

Liu Z, Qin G, Yang J, Wang W, Zhang W, Lu B, et al. Targeting mitochondrial degradation by chimeric autophagy-tethering compounds. Chem Sci. 2023;14(40):11192–202. https://doi.org/10.1039/d3sc03600f.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vara-Pérez M, Agostinis P. BNIP3 in melanoma: isnʼt it IRONic? Mol Cell Oncol. 2021;8(4):1947169. https://doi.org/10.1080/23723556.2021.1947169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-902.e21. https://doi.org/10.1016/j.cell.2019.05.031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

Article  CAS  Google Scholar 

Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: a web server for resolving tumor immunophenotype profiling. Cancer Res. 2018;78(23):6575–80. https://doi.org/10.1158/0008-5472.Can-18-0689.

Article  CAS  PubMed  Google Scholar 

Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30(1):44–56. https://doi.org/10.1093/annonc/mdy495.

Article  CAS  PubMed  Google Scholar 

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

Article  CAS  PubMed  Google Scholar 

Basit F, van Oppen LM, Schöckel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017;8(3):e2716. https://doi.org/10.1038/cddis.2017.133.

Article  PubMed  PubMed Central  Go

留言 (0)

沒有登入
gif