Linster CL, Van Schaftingen E, Hanson AD. Metabolite damage and its repair or pre-emption. Nat Chem Biol. 2013;9(2):72–80.
Article CAS PubMed Google Scholar
Griffith CM, Walvekar AS, Linster CL. Approaches for completing metabolic networks through metabolite damage and repair discovery. Curr Opin Syst Biol. 2021;28: 100379.
Van Schaftingen E, Rzem R, Veiga-da-Cunha M. L-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis. 2009;32(2):135–42.
Veiga-da-Cunha M, Van Schaftingen E, Bommer GT. Inborn errors of metabolite repair. J Inherit Metab Dis. 2020;43(1):14–24.
Article CAS PubMed Google Scholar
Rafter GW, Chaykin S, Krebs EG. The action of glyceraldehyde-3-phosphate dehydrogenase on reduced diphosphopyridine nucleotide. J Biol Chem. 1954;208(2):799–811.
Article CAS PubMed Google Scholar
Prabhakar P, Laboy JI, Wang J, Budker T, Din ZZ, Chobanian M, et al. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys. 1998;360(2):195–205.
Article CAS PubMed Google Scholar
Yoshida A, Dave V. Inhibition of NADP-dependent dehydrogenases by modified products of NADPH. Arch Biochem Biophys. 1975;169(1):298–303.
Article CAS PubMed Google Scholar
Becker-Kettern J, Paczia N, Conrotte JF, Zhu C, Fiehn O, Jung PP, et al. NAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells. FEBS J. 2018;285(18):3376–401.
Article CAS PubMed Google Scholar
Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J Biol Chem. 2011;286(48):41246–52.
Article CAS PubMed PubMed Central Google Scholar
Marbaix AY, Tyteca D, Niehaus TD, Hanson AD, Linster CL, Van Schaftingen E. Occurrence and subcellular distribution of the NAD(P)HX repair system in mammals. Biochem J. 2014;460(1):49–60.
Article CAS PubMed Google Scholar
Van Bergen NJ, Guo Y, Rankin J, Paczia N, Becker-Kettern J, Kremer LS, et al. NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain. 2019;142(1):50–8.
Van Bergen NJ, Walvekar AS, Patraskaki M, Sikora T, Linster CL, Christodoulou J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inherit Metab Dis. 2022;45(6):1028–38.
Article PubMed PubMed Central Google Scholar
Manor J, Calame D, Gijavanekar C, Fisher K, Hunter J, Mizerik E, et al. NAXE deficiency: a neurometabolic disorder of NAD(P)HX repair amenable for metabolic correction. Mol Genet Metab. 2022;136(2):101–10.
Article CAS PubMed PubMed Central Google Scholar
Zhou J, Li J, Stenton SL, Ren X, Gong S, Fang F, et al. NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain. 2020;143(2): e8.
Borna NN, Kishita Y, Abe J, Furukawa T, Ogawa-Tominaga M, Fushimi T, et al. NAD(P)HX dehydratase protein-truncating mutations are associated with neurodevelopmental disorder exacerbated by acute illness. Brain. 2020;143(7): e54.
Malik MU, Nadir H, Jessop ZM, Cubitt JJ. Cutaneous manifestations of NAXD deficiency – a case report. Ann Med Surg. 2020;60:352–5.
Majethia P, Mishra S, Rao LP, Rao R, Shukla A. NAD(P)HX dehydratase (NAXD) deficiency due to a novel biallelic missense variant and review of literature. Eur J Med Genet. 2021;64(9): 104266.
Article CAS PubMed PubMed Central Google Scholar
Manor J, Calame DG, Gijavanekar C, Tran A, Fatih JM, Lalani SR, et al. Niacin therapy improves outcome and normalizes metabolic abnormalities in an NAXD-deficient patient. Brain. 2022;145(5):e36-40.
Van Bergen NJ, Gunanayagam K, Bournazos AM, Walvekar AS, Warmoes MO, Semcesen LN, et al. Severe NAD(P)HX dehydratase (NAXD) neurometabolic syndrome may present in adulthood after mild head trauma. Int J Mol Sci. 2023;24(4):3582.
Article PubMed PubMed Central Google Scholar
Spiegel R, Shaag A, Shalev S, Elpeleg O. Homozygous mutation in the APOA1BP is associated with a lethal infantile leukoencephalopathy. Neurogenetics. 2016;17:187–90.
Article CAS PubMed Google Scholar
Kremer LS, Danhauser K, Herebian D, Ramadža DP, Piekutowska-Abramczuk D, Seibt A, et al. NAXE mutations disrupt the cellular NAD(P)HX repair system and cause a lethal neurometabolic disorder of early childhood. Am J Hum Genet. 2016;99(4):894–902.
Article CAS PubMed PubMed Central Google Scholar
Yu D, Zhao FM, Cai XT, Zhou H, Cheng Y. Clinical and genetic features of early-onset progressive encephalopathy associated with NAXE gene mutations. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(7):524–258.
Trinh J, Imhoff S, Dulovic-Mahlow M, Kandaswamy KK, Tadic V, Schäfer J, et al. Novel NAXE variants as a cause for neurometabolic disorder: implications for treatment. J Neurol. 2020;267:770–82.
Article CAS PubMed Google Scholar
Incecık F, Ceylaner S. Early-onset progressive encephalopathy associated with NAXE gene variants: a case report of a Turkish child. Acta Neurol Belg. 2020;120:733–5.
Mohammadi P, Heidari M, Ashrafi MR, Mahdieh N, Garshasbi M. A novel homozygous missense variant in the NAXE gene in an Iranian family with progressive encephalopathy with brain edema and leukoencephalopathy. Acta Neurol Belg. 2022;122(5):1201–10.
Chiu LW, Lin SS, Chen CH, Lin CH, Lee NC, Hong SY, et al. NAXE gene mutation-related progressive encephalopathy: a case report and literature review. Medicine. 2021;100(42): e27548.
Article PubMed PubMed Central Google Scholar
Niehaus TD, Elbadawi-Sidhu M, Huang L, Prunetti L, Gregory JF III, de Crécy-Lagard V, et al. Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function. 2018. Biosci Rep. https://doi.org/10.1042/BSR20180223.
Kim JD, Zhu L, Sun Q, Fang L. Systemic metabolite profiling reveals sexual dimorphism of AIBP control of metabolism in mice. PLoS ONE. 2021;16(4): e0248964.
Article CAS PubMed PubMed Central Google Scholar
Paczia N, Becker-Kettern J, Conrotte JF, Cifuente JO, Guerin ME, Linster CL. 3-Phosphoglycerate transhydrogenation instead of dehydrogenation alleviates the redox state dependency of yeast de novo L-serine synthesis. Biochemistry. 2019;58(4):259–75.
Article CAS PubMed Google Scholar
Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669–76.
Article CAS PubMed Google Scholar
Meiser J, Schuster A, Pietzke M, Vande Voorde J, Athineos D, Oizel K, et al. Increased formate overflow is a hallmark of oxidative cancer. Nat Commun. 2018;9(1):1368.
Article PubMed PubMed Central Google Scholar
Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, et al. NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Mol Cell. 2018;69(4):581–93.
留言 (0)