Baur DA, Schroer AB, Luden ND, Womack CJ, Smyth SA, Saunders MJ (2014) Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc 46(9):1778–1786. https://doi.org/10.1249/MSS.0000000000000284
Article CAS PubMed Google Scholar
Bergström J, Hultman E (1966) The effect of exercise on muscle glycogen and electrolytes in normals. Scand J Clin Lab Invest 18(1):16–20. https://doi.org/10.3109/00365516609065602
Bergström J, Hultman E (1967) A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest 19(3):218–228. https://doi.org/10.3109/00365516709090629
Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh J, ThompsonC ST, Kelly J, Sumners P, Mileva KN, Bowtell JL, Vanhatalo A, Stj M (2017) Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol 122:446–459
Article CAS PubMed Google Scholar
Bosch AN, Dennis SC, Noakes TD (1994) Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol 76(6):2364–2372. https://doi.org/10.1152/jappl.1994.76.6.2364
Article CAS PubMed Google Scholar
Burnley M, Vanhatalo A, Fulford J, Jones AM (2010) Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a 31 P magnetic resonance spectroscopy study. Exp Physiol 95(7):798–807. https://doi.org/10.1113/expphysiol.2010.052688
Article CAS PubMed Google Scholar
Cairns SP, Renaud J-M (2023) The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue Key points. J Physiol 601:5669–5687
Article CAS PubMed Google Scholar
Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, Greenhaff PL (2000) Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am J Physiol-Endocrinol Metabolism 278(1):E65–E75. https://doi.org/10.1152/ajpendo.2000.278.1.E65
Clark IE, Vanhatalo A, Bailey SJ, Wylie LJ, Kirby BS, Wilkins BW, Jones AM (2018) Effects of two hours of heavy-intensity exercise on the power-duration relationship. Med Sci Sports Exerc 50(8):1658–1668. https://doi.org/10.1249/MSS.0000000000001601
Clark IE, Vanhatalo A, Thompson C, Joseph C, Black MI, Blackwell JR, Wylie LJ, Tan R, Bailey SJ, Wilkins BW, Kirby BS, Andrew Jones XM (2019a) Dynamics of the power-duration relationship during prolonged endurance exercise and influence of carbohydrate ingestion. J Appl Physiol 127:726–736. https://doi.org/10.1152/japplphysiol.00207.2019.-We
Article CAS PubMed Google Scholar
Clark IE, Vanhatalo A, Thompson C, Wylie LJ, Bailey SJ, Kirby BS, Wilkins BW, Andrew Jones XM (2019b) Changes in the power-duration relationship following prolonged exercise: estimation using conventional and all-out protocols and relationship with muscle glycogen. Am J Physiol Regul Integr Comp Physiol 317:59–67. https://doi.org/10.1152/ajpregu.00031.2019.-It
Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61(1):165–172
Article CAS PubMed Google Scholar
Elghobashy ME, Richards AJ, Malekzadeh R, Patel D, Turner LV, Burr JF, Power GA, Laham R, Riddell MC, Cheng AJ (2024) Carbohydrate ingestion increases interstitial glucose and mitigates neuromuscular fatigue during single-leg knee extensions. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000003440
Fernández-García B, Pérez-Landaluce J, Rodríguez-Alonso M, Terrados N (2000) Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc 32(5):1002–1006
Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE (1985) Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc 17(4):472–476. https://doi.org/10.1249/00005768-198508000-00012
Article CAS PubMed Google Scholar
Flynn MG, Costill DL, Hawley JA, Fink WJ, Neufer PD, Fielding RA, Sleeper MD (1987) Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc 19(1):37–40
Article CAS PubMed Google Scholar
Gallo G, Faelli EL, Ruggeri P, Filipas L, Codella R, Plews DJ, Maunder E (2024) Power output at the moderate-to-heavy intensity transition decreases in a non-linear fashion during prolonged exercise. Eur J Appl Physiol. https://doi.org/10.1007/s00421-024-05440-3
Article PubMed Central PubMed Google Scholar
Glace BW, Kremenic IJ, McHugh MP (2019) Effect of carbohydrate beverage ingestion on central versus peripheral fatigue: a placebo-controlled, randomized trial in cyclists. Appl Physiol Nutr Metab 44(2):139–147. https://doi.org/10.1139/apnm-2017-0777
Article CAS PubMed Google Scholar
Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ, Trenell MI, Cermak NM, van Loon C, L. J. (2015) Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Endocrinol Metab 309:1032–1039. https://doi.org/10.1152/ajpendo.00376.2015.-The
Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC (2016) Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol-Endocrinol Metabolism 311(3):E543–E553. https://doi.org/10.1152/ajpendo.00232.2016
Hamilton K, Kilding AE, Plews DJ, Mildenhall MJ, Waldron M, Charoensap T, Cox TH, Brick MJ, Leigh WB, Maunder E (2024) Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Eur J Appl Physiol. https://doi.org/10.1007/s00421-024-05459-6
Article PubMed Central PubMed Google Scholar
Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2(9):817–828. https://doi.org/10.1038/s42255-020-0251-4
Article CAS PubMed Google Scholar
Hargreaves M, McConell G, Proietto J (1995) Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol 78(1):288–292. https://doi.org/10.1152/jappl.1995.78.1.288
Article CAS PubMed Google Scholar
Hargreaves M., & Briggs C. A. (1988) Effect of carbohydrate ingestion on exercise metabolism.
Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71(2–3):129–139. https://doi.org/10.1111/j.1748-1716.1967.tb03719.x
Article CAS PubMed Google Scholar
Jamnick NA, Botella J, Pyne DB, Bishop DJ (2018) Manipulating graded exercise test variables affects the validity of the lactate threshold and V˙O2peak. PLoS ONE 13(7):e0199794. https://doi.org/10.1371/journal.pone.0199794
Article CAS PubMed Central PubMed Google Scholar
Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ (2020) An examination and critique of current methods to determine exercise intensity. Sports Med 50(10):1729–1756. https://doi.org/10.1007/s40279-020-01322-8
Jentjens RLPG, Jeukendrup AE (2005) High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr 93(4):485–492. https://doi.org/10.1079/BJN20041368
Article CAS PubMed Google Scholar
Jentjens RLPG, Achten J, Jeukendrup AE (2004a) High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc 36(9):1551–1558. https://doi.org/10.1249/01.MSS.0000139796.07843.1D
Article CAS PubMed Google Scholar
Jentjens RLPG, Moseley L, Waring RH, Harding LK, Jeukendrup AE (2004b) Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 96(4):1277–1284. https://doi.org/10.1152/japplphysiol.00974.2003
留言 (0)