Analysis of exportins expression unveils their prognostic significance in colon adenocarcinoma: insights from public databases

Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003. https://doi.org/10.1097/01.MP.0000062859.46942.93.

Article  PubMed  Google Scholar 

Mattiuzzi C, Sanchis-Gomar F, Lippi G. Concise update on colorectal cancer epidemiology. Ann Transl Med. 2019. https://doi.org/10.21037/atm.2019.07.91.

Article  PubMed  PubMed Central  Google Scholar 

Çağatay T, Chook YM. Karyopherins in cancer. Curr Opin Cell Biol. 2018. https://doi.org/10.1016/j.ceb.2018.01.006.

Article  PubMed  PubMed Central  Google Scholar 

Gontan C, Guttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, et al. Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J Cell Biol. 2009. https://doi.org/10.1083/jcb.200810106.

Article  PubMed  PubMed Central  Google Scholar 

Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, et al. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201712013.

Article  PubMed  PubMed Central  Google Scholar 

Thakar K, Karaca S, Port SA, Urlaub H, Kehlenbach RH. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol Cell Proteomics. 2013. https://doi.org/10.1074/mcp.M112.024877.

Article  PubMed  Google Scholar 

Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife. 2015. https://doi.org/10.7554/eLife.11466.

Article  PubMed  PubMed Central  Google Scholar 

Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 — from biology to targeted therapy. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-020-00442-4.

Article  PubMed  Google Scholar 

Chakravarti N, Boles A, Burzinski R, Sindaco P, Isabelle C, McConnell K, et al. XPO1 blockade with KPT-330 promotes apoptosis in cutaneous T-cell lymphoma by activating the p53–p21 and p27 pathways. Sci Rep. 2024;14:9305. https://doi.org/10.1038/s41598-024-59994-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azmi AS, Muqbil I, Wu J, Aboukameel A, Senapedis W, Baloglu E, et al. Targeting the nuclear export protein XPO1/CRM1 reverses epithelial to mesenchymal transition. Sci Rep. 2015. https://doi.org/10.1038/srep16077.

Article  PubMed  PubMed Central  Google Scholar 

Subhash VV, Yeo MS, Wang L, Tan SH, Wong FY, Thuya WL, et al. Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-30686-1.

Article  PubMed  PubMed Central  Google Scholar 

Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma. Cancer Cell Int. 2019. https://doi.org/10.1186/s12935-019-0858-2.

Article  PubMed  PubMed Central  Google Scholar 

Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/mTOR signaling pathway in chronic myeloid leukemia. Hematology. 2023. https://doi.org/10.1080/16078454.2022.2161201.

Article  PubMed  Google Scholar 

Yuksel UM, Dilek G, Dogan L, Gulcelik MA, Berberoglu U. The relationship between CSE1L expression and axillary lymph node metastasis in breast cancer. Tumori. 2015. https://doi.org/10.5301/tj.5000239.

Article  PubMed  Google Scholar 

Tunccan T, Kılıc C, Duran AB, Ozlugedik S, Ant A, Alkan G. Role of CSE1L expression in determining recurrence and survival of laryngeal tumors. Eur Arch Otorhinolaryngol. 2022. https://doi.org/10.1007/s00405-021-07206-5.

Article  PubMed  Google Scholar 

Liu W, Zhou Z, Li Y, Xu J, Shen Y, Luo S, et al. CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer. Am J Cancer Res. 2021;11:4380.

CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Yuan S, Liu J, Wang Y, Zhang Y, Chen X, et al. CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.29107.

Article  PubMed  PubMed Central  Google Scholar 

Wang YS, Peng C, Guo Y, Li Y. CSE1L promotes proliferation and migration in oral cancer through positively regulating MITF. Eur Rev Med Pharmacol Sci. 2020. https://doi.org/10.26355/eurrev_202005_21327.

Article  PubMed  Google Scholar 

Aboukameel A, Muqbil I, Baloglu E, Senapedis W, Landesman Y, Argueta C, et al. Down-regulation of AR splice variants through XPO1 suppression contributes to the inhibition of prostate cancer progression. Oncotarget. 2018. https://doi.org/10.18632/oncotarget.26239.

Article  PubMed  PubMed Central  Google Scholar 

Pimiento JM, Neill KG, Henderson-Jackson E, Eschrich SA, Chen DT, Husain K, et al. Knockdown of CSE1L gene in colorectal cancer reduces tumorigenesis in vitro. Am J Pathol. 2016. https://doi.org/10.1016/j.ajpath.2016.06.016.

Article  PubMed  PubMed Central  Google Scholar 

Aksu M, Trakhanov S, Görlich D. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat Commun. 2016. https://doi.org/10.1038/ncomms11952.

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Wei S, Ning S, Jie Y, Ru Y, Gu Y. Evaluation of TGFβ, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC. Exp Ther Med. 2013. https://doi.org/10.3892/etm.2012.750.

Article  PubMed  PubMed Central  Google Scholar 

Haldrup J, Weiss S, Schmidt L, Sørensen KD. Investigation of enzalutamide, docetaxel, and cabazitaxel resistance in the castration resistant prostate cancer cell line C4 using genome-wide CRISPR/Cas9 screening. Sci Rep. 2023. https://doi.org/10.1038/s41598-023-35950-7.

Article  PubMed  PubMed Central  Google Scholar 

Yamazawa R, Jiko C, Choi S, Park IY, Nakagawa A, Yamashita E, et al. Structural basis for selective binding of export cargoes by exportin-5. Structure. 2018. https://doi.org/10.1016/j.str.2018.06.014.

Article  PubMed  Google Scholar 

Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, et al. A high-resolution structure of the pre-microrna nuclear export machinery. Science (1979). 2009. https://doi.org/10.1126/science.1178705.

Article  Google Scholar 

Wen J, Gao Q, Wang N, Zhang W, Cao K, Zhang Q, et al. Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine. 2017. https://doi.org/10.1097/MD.0000000000006351.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Pu W, Sun HL, Zhou JK, Fan X, Zheng Y, et al. Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Cell Death Differ. 2018. https://doi.org/10.1038/s41418-018-0065-z.

Article  PubMed  PubMed Central  Google Scholar 

Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, et al. Up-regulation of dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006. https://doi.org/10.2353/ajpath.2006.060480.

Article  PubMed  PubMed Central  Google Scholar 

Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, et al. A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells. Cancer Cell. 2010. https://doi.org/10.1016/j.ccr.2010.09.007.

Article  PubMed  Google Scholar 

Lin J, Hou Y, Huang S, Wang Z, Sun C, Wang Z, et al. Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma. Mol Carcinog. 2019. https://doi.org/10.1002/mc.2292

留言 (0)

沒有登入
gif