Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003. https://doi.org/10.1097/01.MP.0000062859.46942.93.
Mattiuzzi C, Sanchis-Gomar F, Lippi G. Concise update on colorectal cancer epidemiology. Ann Transl Med. 2019. https://doi.org/10.21037/atm.2019.07.91.
Article PubMed PubMed Central Google Scholar
Çağatay T, Chook YM. Karyopherins in cancer. Curr Opin Cell Biol. 2018. https://doi.org/10.1016/j.ceb.2018.01.006.
Article PubMed PubMed Central Google Scholar
Gontan C, Guttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, et al. Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J Cell Biol. 2009. https://doi.org/10.1083/jcb.200810106.
Article PubMed PubMed Central Google Scholar
Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, et al. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201712013.
Article PubMed PubMed Central Google Scholar
Thakar K, Karaca S, Port SA, Urlaub H, Kehlenbach RH. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol Cell Proteomics. 2013. https://doi.org/10.1074/mcp.M112.024877.
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife. 2015. https://doi.org/10.7554/eLife.11466.
Article PubMed PubMed Central Google Scholar
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 — from biology to targeted therapy. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-020-00442-4.
Chakravarti N, Boles A, Burzinski R, Sindaco P, Isabelle C, McConnell K, et al. XPO1 blockade with KPT-330 promotes apoptosis in cutaneous T-cell lymphoma by activating the p53–p21 and p27 pathways. Sci Rep. 2024;14:9305. https://doi.org/10.1038/s41598-024-59994-5.
Article CAS PubMed PubMed Central Google Scholar
Azmi AS, Muqbil I, Wu J, Aboukameel A, Senapedis W, Baloglu E, et al. Targeting the nuclear export protein XPO1/CRM1 reverses epithelial to mesenchymal transition. Sci Rep. 2015. https://doi.org/10.1038/srep16077.
Article PubMed PubMed Central Google Scholar
Subhash VV, Yeo MS, Wang L, Tan SH, Wong FY, Thuya WL, et al. Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-30686-1.
Article PubMed PubMed Central Google Scholar
Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma. Cancer Cell Int. 2019. https://doi.org/10.1186/s12935-019-0858-2.
Article PubMed PubMed Central Google Scholar
Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/mTOR signaling pathway in chronic myeloid leukemia. Hematology. 2023. https://doi.org/10.1080/16078454.2022.2161201.
Yuksel UM, Dilek G, Dogan L, Gulcelik MA, Berberoglu U. The relationship between CSE1L expression and axillary lymph node metastasis in breast cancer. Tumori. 2015. https://doi.org/10.5301/tj.5000239.
Tunccan T, Kılıc C, Duran AB, Ozlugedik S, Ant A, Alkan G. Role of CSE1L expression in determining recurrence and survival of laryngeal tumors. Eur Arch Otorhinolaryngol. 2022. https://doi.org/10.1007/s00405-021-07206-5.
Liu W, Zhou Z, Li Y, Xu J, Shen Y, Luo S, et al. CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer. Am J Cancer Res. 2021;11:4380.
CAS PubMed PubMed Central Google Scholar
Li Y, Yuan S, Liu J, Wang Y, Zhang Y, Chen X, et al. CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.29107.
Article PubMed PubMed Central Google Scholar
Wang YS, Peng C, Guo Y, Li Y. CSE1L promotes proliferation and migration in oral cancer through positively regulating MITF. Eur Rev Med Pharmacol Sci. 2020. https://doi.org/10.26355/eurrev_202005_21327.
Aboukameel A, Muqbil I, Baloglu E, Senapedis W, Landesman Y, Argueta C, et al. Down-regulation of AR splice variants through XPO1 suppression contributes to the inhibition of prostate cancer progression. Oncotarget. 2018. https://doi.org/10.18632/oncotarget.26239.
Article PubMed PubMed Central Google Scholar
Pimiento JM, Neill KG, Henderson-Jackson E, Eschrich SA, Chen DT, Husain K, et al. Knockdown of CSE1L gene in colorectal cancer reduces tumorigenesis in vitro. Am J Pathol. 2016. https://doi.org/10.1016/j.ajpath.2016.06.016.
Article PubMed PubMed Central Google Scholar
Aksu M, Trakhanov S, Görlich D. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat Commun. 2016. https://doi.org/10.1038/ncomms11952.
Article PubMed PubMed Central Google Scholar
Zhang H, Wei S, Ning S, Jie Y, Ru Y, Gu Y. Evaluation of TGFβ, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC. Exp Ther Med. 2013. https://doi.org/10.3892/etm.2012.750.
Article PubMed PubMed Central Google Scholar
Haldrup J, Weiss S, Schmidt L, Sørensen KD. Investigation of enzalutamide, docetaxel, and cabazitaxel resistance in the castration resistant prostate cancer cell line C4 using genome-wide CRISPR/Cas9 screening. Sci Rep. 2023. https://doi.org/10.1038/s41598-023-35950-7.
Article PubMed PubMed Central Google Scholar
Yamazawa R, Jiko C, Choi S, Park IY, Nakagawa A, Yamashita E, et al. Structural basis for selective binding of export cargoes by exportin-5. Structure. 2018. https://doi.org/10.1016/j.str.2018.06.014.
Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, et al. A high-resolution structure of the pre-microrna nuclear export machinery. Science (1979). 2009. https://doi.org/10.1126/science.1178705.
Wen J, Gao Q, Wang N, Zhang W, Cao K, Zhang Q, et al. Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine. 2017. https://doi.org/10.1097/MD.0000000000006351.
Article PubMed PubMed Central Google Scholar
Li J, Pu W, Sun HL, Zhou JK, Fan X, Zheng Y, et al. Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Cell Death Differ. 2018. https://doi.org/10.1038/s41418-018-0065-z.
Article PubMed PubMed Central Google Scholar
Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, et al. Up-regulation of dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006. https://doi.org/10.2353/ajpath.2006.060480.
Article PubMed PubMed Central Google Scholar
Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, et al. A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells. Cancer Cell. 2010. https://doi.org/10.1016/j.ccr.2010.09.007.
Lin J, Hou Y, Huang S, Wang Z, Sun C, Wang Z, et al. Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma. Mol Carcinog. 2019. https://doi.org/10.1002/mc.2292
留言 (0)