Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol. 8(8):479–91. https://doi.org/10.1038/nrclinonc.2011.63
Article CAS PubMed PubMed Central Google Scholar
Nau KC, Lewis WD. Multiple Myeloma: Diagnosis and treatment. Am Fam Physician. 2008;78(7):853–9.
Bray F et al. ‘Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, CA. Cancer J. Clin., vol. n/a, no. n/a, https://doi.org/10.3322/caac.21834
Rajkumar SV, Merlini G, San Miguel JF. Redefining myeloma. Nat Rev Clin Oncol. 9(9):494–6. https://doi.org/10.1038/nrclinonc.2012.128.
Landgren O, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood. 2009;113(22):5412–7. https://doi.org/10.1182/blood-2008-12-194241.
Article CAS PubMed PubMed Central Google Scholar
Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 5(10):e365. https://doi.org/10.1038/bcj.2015.92.
Article CAS PubMed PubMed Central Google Scholar
Misund K, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34(1):322–6. https://doi.org/10.1038/s41375-019-0543-4.
Walker BA, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma’. Blood. 2018;132(6):587–97. https://doi.org/10.1182/blood-2018-03-840132.
Article CAS PubMed PubMed Central Google Scholar
John L, Krauth MT, Podar K, Raab M-S. ‘Pathway-directed therapy in multiple myeloma. Cancers. 2021;13(7):1668. https://doi.org/10.3390/cancers13071668.
Article CAS PubMed PubMed Central Google Scholar
Hanamura I. Multiple myeloma with high-risk cytogenetics and its treatment approach. Int J Hematol. 2022;115(6):762–77. https://doi.org/10.1007/s12185-022-03353-5.
Article CAS PubMed PubMed Central Google Scholar
Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–5. https://doi.org/10.1016/j.gde.2005.08.002.
Article CAS PubMed Google Scholar
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609.
Article CAS PubMed PubMed Central Google Scholar
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36. https://doi.org/10.1093/carcin/bgp220.
Article CAS PubMed Google Scholar
Sive JI, Feber A, Smith D, Quinn J, Beck S, Yong K. Global hypomethylation in myeloma is associated with poor prognosis. Br J Haematol. 2016;172(3):473–5. https://doi.org/10.1111/bjh.13506.
Galm O, et al. DNA methylation changes in multiple myeloma. Leukemia. 2004;18(10):1687–92. https://doi.org/10.1038/sj.leu.2403434.
Article CAS PubMed Google Scholar
Chim C-S, Liang R, Leung M-H, Yip S-F, Kwong Y-L. Aberrant gene promoter methylation marking disease progression in multiple myeloma. Leukemia. 2006;20(6):1190–2. https://doi.org/10.1038/sj.leu.2404205.
Article CAS PubMed Google Scholar
Salhia B, Baker A, Ahmann G, Auclair D, Fonseca R, Carpten J. DNA methylation analysis determines the high frequency of genic hypomethylation and low frequency of hypermethylation events in plasma cell tumors. Cancer Res. 2010;70(17):6934–44. https://doi.org/10.1158/0008-5472.CAN-10-0282.
Article CAS PubMed Google Scholar
Caprio C, Sacco A, Giustini V, Roccaro AM. Epigenetic aberrations in multiple myeloma. Cancers. 2020;12(10):2996. https://doi.org/10.3390/cancers12102996.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci U S A. 2010;107(17):7904–9. https://doi.org/10.1073/pnas.0908441107.
Article PubMed PubMed Central Google Scholar
Chi J, et al. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 6:23. https://doi.org/10.1186/1745-6150-6-23.
Article CAS PubMed PubMed Central Google Scholar
Wong K-Y, Liang R, So C-C, Jin D-Y, Costello JF, Chim C-S. Epigenetic silencing of MIR203 in multiple myeloma. Br J Haematol. 2011;154(5):569–78. https://doi.org/10.1111/j.1365-2141.2011.08782.x.
Article CAS PubMed Google Scholar
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting mirnas and other non-coding rnas as a therapeutic approach: An update. Non-Coding RNA. 2023;9(2):27. https://doi.org/10.3390/ncrna9020027.
Article CAS PubMed PubMed Central Google Scholar
Samur MK, et al. Long intergenic non-coding rnas have an independent impact on survival in multiple myeloma. Leukemia. 2018;32(12):2626–35. https://doi.org/10.1038/s41375-018-0116-y.
Article CAS PubMed PubMed Central Google Scholar
Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17(5):556–65. https://doi.org/10.1101/gr.6036807.
Article CAS PubMed PubMed Central Google Scholar
Xu Q, et al. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. BMC Plant Biol. 17(1):42. https://doi.org/10.1186/s12870-017-0984-8.
Article CAS PubMed PubMed Central Google Scholar
Zhou ZX, Chen XM, Zhang YQ, Peng L, Xue XY, Li GX. Comprehensive analysis of long noncoding RNA and mRNA in five colorectal cancer tissues and five normal tissues. Bio Rep. 2020;40(2):BSR20191139. https://doi.org/10.1042/BSR20191139
Wang C, et al. LncRNA structural characteristics in epigenetic regulation. Int J Mol Sci. 18(12):2659. https://doi.org/10.3390/ijms18122659.
Article CAS PubMed PubMed Central Google Scholar
Morlando M, Fatica A. Alteration of epigenetic regulation by long noncoding rnas in cancer. Int J Mol Sci. 2018;19(2):570. https://doi.org/10.3390/ijms19020570.
Article CAS PubMed PubMed Central Google Scholar
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in cancer: From garbage to junk. Cancers. 2020;12(11):3220. https://doi.org/10.3390/cancers12113220.
留言 (0)