Hoh BL, Ko NU, Amin-Hanjani S, et al. Guideline for the management of patients with aneurysmal subarachnoid hemorrhage: a guideline from the American heart association/American stroke association. Stroke. 2023;54(7):e314–70. https://doi.org/10.1161/STR.0000000000000436.
Registry SC-GS. Global impact of the COVID-19 pandemic on subarachnoid haemorrhage hospitalisations, aneurysm treatment and in-hospital mortality: 1-year follow-up. J Neurol Neurosurg Psychiatry. 2022. https://doi.org/10.1136/jnnp-2022-329200.
Lauzier DC, Jayaraman K, Yuan JY, et al. Early brain injury after subarachnoid hemorrhage: incidence and mechanisms. Stroke. 2023;54(5):1426–40. https://doi.org/10.1161/STROKEAHA.122.040072.
Article CAS PubMed PubMed Central Google Scholar
Ahn SH, Savarraj JP, Pervez M, et al. The subarachnoid hemorrhage early brain edema score predicts delayed cerebral ischemia and clinical outcomes. Neurosurgery. 2018;83(1):137–45. https://doi.org/10.1093/neuros/nyx364.
Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33(5):1225–32. https://doi.org/10.1161/01.str.0000015624.29071.1f.
Yuan JY, Chen Y, Kumar A, et al. Automated quantification of reduced sulcal volume identifies early brain injury after aneurysmal subarachnoid hemorrhage. Stroke. 2021;52(4):1380–9. https://doi.org/10.1161/STROKEAHA.120.032001.
Article CAS PubMed PubMed Central Google Scholar
Choi HA, Bajgur SS, Jones WH, et al. Quantification of cerebral edema after subarachnoid hemorrhage. Neurocrit Care. 2016;25(1):64–70. https://doi.org/10.1007/s12028-015-0229-3.
Rass V, Ianosi BA, Wegmann A, et al. Delayed resolution of cerebral edema is associated with poor outcome after nontraumatic subarachnoid hemorrhage. Stroke. 2019;50(4):828–36. https://doi.org/10.1161/STROKEAHA.118.024283.
Budohoski KP, Guilfoyle M, Helmy A, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2014;85(12):1343–53. https://doi.org/10.1136/jnnp-2014-307711.
Golitz P, Hoelter P, Rosch J, Roessler K, Knossalla F, Doerfler A. Ultra-early detection of microcirculatory injury as predictor of developing delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Clin Neuroradiol. 2018;28(4):501–7. https://doi.org/10.1007/s00062-017-0616-6.
Udoetuk JD, Stiefel MF, Hurst RW, Weigele JB, LeRoux PD. Admission angiographic cerebral circulation time may predict subsequent angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2007;61(6):1152-9-1159–61. https://doi.org/10.1227/01.neu.0000306092.07647.6d.
Lin CF, Hsu SP, Lin CJ, et al. Prolonged cerebral circulation time is the best parameter for predicting vasospasm during initial CT perfusion in subarachnoid hemorrhagic patients. PLoS ONE. 2016;11(3):e0151772. https://doi.org/10.1371/journal.pone.0151772.
Article CAS PubMed PubMed Central Google Scholar
Su M, Chen Z, Chen X, et al. Venous flow profiles on perfusion CT are associated with futile recanalization after thrombectomy. Neuropsychiatr Dis Treat. 2022;18:933–42. https://doi.org/10.2147/NDT.S360626.
Article PubMed PubMed Central Google Scholar
Svedung Wettervik T, Howells T, Hanell A, Ronne-Engstrom E, Lewen A, Enblad P. Low intracranial pressure variability is associated with delayed cerebral ischemia and unfavorable outcome in aneurysmal subarachnoid hemorrhage. J Clin Monit Comput. 2022;36(2):569–78. https://doi.org/10.1007/s10877-021-00688-y.
Kerber CW, Liepsch D. Flow dynamics for radiologists. II. Practical considerations in the live human. AJNR Am J Neuroradiol. 1994;15(6):1076–86.
CAS PubMed PubMed Central Google Scholar
Becerril-Gaitan A, Nguyen T, Liu C, et al. The effect of age on cerebral vasospasm and delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. World Neurosurg. 2024;187:e1017–24. https://doi.org/10.1016/j.wneu.2024.05.036.
Jaja BNR, Saposnik G, Lingsma HF, et al. Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study. BMJ. 2018;360:j5745. https://doi.org/10.1136/bmj.j5745.
Abboud T, Rustom J, Bester M, et al. Morphology of ruptured and unruptured intracranial aneurysms. World Neurosurg. 2017;99:610–7. https://doi.org/10.1016/j.wneu.2016.12.053.
Sekhon MS, Griesdale DE, Robba C, et al. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med. 2014;40(9):1267–74. https://doi.org/10.1007/s00134-014-3392-7.
Chen L, Xu M, Yan S, Luo Z, Tong L, Lou M. Insufficient cerebral venous drainage predicts early edema in acute intracerebral hemorrhage. Neurology. 2019;93(15):e1463–73. https://doi.org/10.1212/WNL.0000000000008242.
Article CAS PubMed Google Scholar
Won YD, Kim JM, Cheong JH, Ryu JI, Yi HJ, Han MH. Effect of osteoporotic condition on ventriculomegaly and shunt-dependent hydrocephalus after subarachnoid hemorrhage. Stroke. 2021;52(3):994–1003. https://doi.org/10.1161/STROKEAHA.120.031044.
Article CAS PubMed Google Scholar
Lu J, Ji N, Yang Z, Zhao X. Prognosis and treatment of acute hydrocephalus following aneurysmal subarachnoid haemorrhage. J Clin Neurosci. 2012;19(5):669–72. https://doi.org/10.1016/j.jocn.2011.06.032.
Sanelli PC, Lev MH, Eastwood JD, Gonzalez RG, Lee TY. The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Acad Radiol. 2004;11(10):1085–92. https://doi.org/10.1016/j.acra.2004.07.002.
Soustiel JF, Mor N, Zaaroor M, Goldsher D. Cerebral perfusion computerized tomography: influence of reference vessels, regions of interest and interobserver variability. Neuroradiology. 2006;48(9):670–7. https://doi.org/10.1007/s00234-006-0099-7.
Kealey SM, Loving VA, Delong DM, Eastwood JD. User-defined vascular input function curves: influence on mean perfusion parameter values and signal-to-noise ratio. Radiology. 2004;231(2):587–93. https://doi.org/10.1148/radiol.2312030489.
Bisdas S, Konstantinou GN, Gurung J, et al. Effect of the arterial input function on the measured perfusion values and infarct volumetric in acute cerebral ischemia evaluated by perfusion computed tomography. Invest Radiol. 2007;42(3):147–56. https://doi.org/10.1097/01.rli.0000252486.79800.a7.
Eibach M, Won SY, Bruder M, et al. Age dependency and modification of the subarachnoid hemorrhage early brain edema score. J Neurosurg. 2020;134(3):946–52. https://doi.org/10.3171/2019.12.JNS192744.
Torbey MT, Hauser TK, Bhardwaj A, et al. Effect of age on cerebral blood flow velocity and incidence of vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2001;32(9):2005–11. https://doi.org/10.1161/hs0901.094622.
Article CAS PubMed Google Scholar
Da Silva IR, Gomes JA, Wachsman A, Rodriguez de Freitas G, Provencio JJ. Effect of age on transcranial doppler velocities in patients with aneurysmal subarachnoid hemorrhage. Eur Neurol. 2016;76(5–6):261–6. https://doi.org/10.1159/000452273.
Said M, Gumus M, Herten A, et al. Subarachnoid hemorrhage early brain edema score (SEBES) as a radiographic marker of clinically relevant intracranial hypertension and unfavorable outcome after subarachnoid hemorrhage. Eur J Neurol. 2021;28(12):4051–9. https://doi.org/10.1111/ene.15033.
留言 (0)