The perception of artificial intelligence and infertility care among patients undergoing fertility treatment

Van Calster B, Wynants L. Machine learning in medicine. N Engl J Med. 2019;380(26):2588.

Article  PubMed  Google Scholar 

Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real-life clinical practice: systematic review. J Med Internet Res. 2021;23(4):e25759.

Article  PubMed  PubMed Central  Google Scholar 

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

Article  PubMed  Google Scholar 

Johnson KW, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79.

Article  PubMed  Google Scholar 

Lopez-Jimenez F, et al. Artificial intelligence in cardiology: present and future. Mayo Clin Proc. 2020;95(5):1015–39.

Article  PubMed  Google Scholar 

Armstrong GW, Lorch AC. A(eye): a review of current applications of artificial intelligence and machine learning in ophthalmology. Int Ophthalmol Clin. 2020;60(1):57–71.

Article  PubMed  Google Scholar 

Li JO, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. Prog Retin Eye Res. 2021;82:100900.

Article  PubMed  Google Scholar 

Bera K, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2022;19(2):132–46.

Article  PubMed  Google Scholar 

Kelly BS, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022;32(11):7998–8007.

Article  PubMed  PubMed Central  Google Scholar 

Lobig F, et al. To pay or not to pay for artificial intelligence applications in radiology. NPJ Digit Med. 2023;6(1):117.

Article  PubMed  PubMed Central  Google Scholar 

Youngster M, et al. Artificial intelligence in the service of intrauterine insemination and timed intercourse in spontaneous cycles. Fertil Steril. 2023;120(5):1004–12.

Article  PubMed  Google Scholar 

Cherouveim P, Velmahos C, Bormann CL. Artificial intelligence for sperm selection-a systematic review. Fertil Steril. 2023;120(1):24–31.

Article  PubMed  Google Scholar 

Salih M, et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum Reprod Open. 2023;2023(3):hoad031.

Article  PubMed  PubMed Central  Google Scholar 

Abdullah KAL, et al. Automation in ART: paving the way for the future of infertility treatment. Reprod Sci. 2023;30(4):1006–16.

Article  PubMed  Google Scholar 

Medenica S, et al. The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes-the value of regulatory frameworks. Diagnostics (Basel). 2022;12(12). https://doi.org/10.3390/diagnostics12122979.

Fernandez EI, et al. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet. 2020;37(10):2359–76.

Article  PubMed  PubMed Central  Google Scholar 

Ghayda RA, et al. Artificial intelligence in andrology: from semen analysis to image diagnostics. World J Mens Health. 2024;42(1):39–61.

Article  PubMed  Google Scholar 

Zaninovic N, Elemento O, Rosenwaks Z. Artificial intelligence: its applications in reproductive medicine and the assisted reproductive technologies. Fertil Steril. 2019;112(1):28–30.

Article  PubMed  Google Scholar 

Wang R, et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139–54.

Article  PubMed  PubMed Central  Google Scholar 

Jiang VS, Bormann CL. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil Steril. 2023;120(1):17–23.

Article  PubMed  Google Scholar 

Hariton E, et al. Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertil Steril. 2023;120(1):8–16.

Article  PubMed  Google Scholar 

Letterie G, MacDonald A, Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022;44(2):254–60.

Article  PubMed  Google Scholar 

Riordon J, McCallum C, Sinton D. Deep learning for the classification of human sperm. Comput Biol Med. 2019;111:103342.

Article  PubMed  Google Scholar 

Pavlovic ZJ, Jiang VS, Hariton E. Current applications of artificial intelligence in assisted reproductive technologies through the perspective of a patient’s journey. Curr Opin Obstet Gynecol. 2024;36(4):211–7.

Article  PubMed  Google Scholar 

Thomasian NM, Eickhoff C, Adashi EY. Advancing health equity with artificial intelligence. J Public Health Policy. 2021;42(4):602–11.

Article  PubMed  PubMed Central  Google Scholar 

Abramoff MD, et al. Considerations for addressing bias in artificial intelligence for health equity. NPJ Digit Med. 2023;6(1):170.

Article  PubMed  PubMed Central  Google Scholar 

Fritsch SJ, et al. Attitudes and perception of artificial intelligence in healthcare: a cross-sectional survey among patients. Digit Health. 2022;8:20552076221116772.

PubMed  PubMed Central  Google Scholar 

Lennartz S, et al. Use and control of artificial intelligence in patients across the medical workflow: single-center questionnaire study of patient perspectives. J Med Internet Res. 2021;23(2):e24221.

Article  PubMed  PubMed Central  Google Scholar 

Stai B, et al. Public perceptions of artificial intelligence and robotics in medicine. J Endourol. 2020;34(10):1041–8.

Article  PubMed  PubMed Central  Google Scholar 

York T, Jenney H, Jones G. Clinician and computer: a study on patient perceptions of artificial intelligence in skeletal radiography. BMJ Health Care Inform. 2020;27(3). https://doi.org/10.1136/bmjhci-2020-100233.

Khosravi P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21.

Article  PubMed  PubMed Central  Google Scholar 

Fitz VW, et al. Should there be an “AI” in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. J Assist Reprod Genet. 2021;38(10):2663–70.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif