Finding the ideal solvent for the analysis of polar analytes using supercritical fluid chromatography

Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A. 1990;499:177–96. https://doi.org/10.1016/S0021-9673(00)96972-3.

Article  CAS  Google Scholar 

Yoshida T. Peptide separation by hydrophilic-interaction chromatography: a review. J Biochem Biophys Methods. 2004;60(3):265–80. https://doi.org/10.1016/j.jbbm.2004.01.006.

Article  CAS  PubMed  Google Scholar 

Song H, Vanderheyden Y, Adams E, Desmet G, Cabooter D. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. J Chromatogr A. 2016;1455:102–12. https://doi.org/10.1016/j.chroma.2016.05.054.

Article  CAS  PubMed  Google Scholar 

West C. Current trends in supercritical fluid chromatography. Anal Bioanal Chem. 2018;410:6441–57. https://doi.org/10.1007/s00216-018-1267-4.

Article  CAS  PubMed  Google Scholar 

Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. 5th ed. New York City, NY: McGraw Hill Education; 2001.

Losacco GL, Veuthey JL, Guillarme D. Metamorphosis of supercritical fluid chromatography: a viable tool for the analysis of polar compounds? Trends Anal Chem. 2021;141: 116304. https://doi.org/10.1016/j.trac.2021.116304.

Article  CAS  Google Scholar 

Guillarme D. SFC-MS: Current status and future directions. Lecture at 45th International Symposium on High Performance Liquid Phase Separations and Related Techniques, Prague, Czech Republic; 2017.

Liu J, Regalado EL, Mergelsberg I, Welch CW. Extending the range of supercritical fluid chromatography by use of water-rich modifiers. Org Biomol Chem. 2013;11:4925–9. https://doi.org/10.1039/C3OB41121D.

Article  CAS  PubMed  Google Scholar 

Batteau M, Faure K. Effect of the injection of water-containing diluents on band broadening in analytical supercritical fluid chromatography. J Chromatogr A. 2022;1673: 463056. https://doi.org/10.1016/j.chroma.2022.463056.

Article  CAS  PubMed  Google Scholar 

Enmark M, Glenne E, Leśko M, Langborg Weinmann A, Leek T, Kaczmarski K, Klarqvist M, Samuelsson J, Fornstedt T. Investigation of robustness for supercritical fluid chromatography separation of peptides: isocratic vs gradient mode. J Chromatogr A. 2018;1568:177–87. https://doi.org/10.1016/j.chroma.2018.07.029.

Article  CAS  PubMed  Google Scholar 

Fairchild JN, Hill J. Influence of sample solvent composition for SFC separations. LCGC North Am. 2013;31:326–33.

CAS  Google Scholar 

Desfontaine V, Tarafder A, Hill J, Fairchild J, Grand-Guillaume Perrenoud A, Veuthey JL, Guillarme D. A systematic investigation of sample diluents in modern supercritical fluid chromatography. J Chromatogr A. 2017;1511:122–31. https://doi.org/10.1016/j.chroma.2017.06.075.

Article  CAS  PubMed  Google Scholar 

Abrahamsson V, Sandahl M. Impact of injection solvents on supercritical fluid chromatography. J Chromatogr A. 2013;1306:80–8. https://doi.org/10.1016/j.chroma.2013.07.056.

Article  CAS  PubMed  Google Scholar 

Enmark M, Åsberg D, Shalliker A, Samuelsson J, Fornstedt T. A closer study of peak distortions in supercritical fluid chromatography as generated by the injection. J Chromatogr A. 2015;1400:131–9. https://doi.org/10.1016/j.chroma.2015.04.059.

Article  CAS  PubMed  Google Scholar 

Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Anal Chem. 2013;50:78–84. https://doi.org/10.1016/j.trac.2013.04.010.

Article  CAS  Google Scholar 

Hessel V, Tran NN, Asrami MR, Tran QD, Long NVD, Escribà-Gelonch M, Tejada JO, Linke S, Sundmacher K. Sustainability of green solvents – review and perspective. Green Chem. 2022;24:410–37. https://doi.org/10.1039/d1gc03662a.

Article  CAS  Google Scholar 

Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016;18:288–96. https://doi.org/10.1039/c5gc01008j.

Article  Google Scholar 

Jessop PG. Searching for green solvents. Green Chem. 2011;13:1391–8. https://doi.org/10.1039/c0gc00797h.

Article  CAS  Google Scholar 

Pyo SH, Park JH, Chang TS, Hatti-Kaul R. Dimethyl carbonate as a green chemical. Curr Opin Green Sustain Chem. 2017;5:61–6. https://doi.org/10.1016/j.cogsc.2017.03.012.

Article  Google Scholar 

Xuan K, Chen S, Pu Y, Guo Yao., Guo Yad., Li Y, Pu C, Zhao N, Xiao F. Encapsulating phosphotungstic acid within metal-organic framework for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 Util. 2022;59:101960. https://doi.org/10.1016/j.jcou.2022.101960.

Liu H, Zhu D, Jia B, Huang Y, Cheng Y, Luo X, Liang Z. Study on catalytic performance and kinetics of high efficiency CeO2 catalyst prepared by freeze drying for the synthesis of dimethyl carbonate from CO2 and methanol. Chem Eng Sci. 2022;254: 117614. https://doi.org/10.1016/j.ces.2022.117614.

Article  CAS  Google Scholar 

He ZH, Sun YC, Wei YY, Wang K, Wang W, Chen Z, Wang ZY, Tian Y, Liu ZT. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2 nanoparticles/Co3O4 nanosheets. Fuel. 2022;325: 124945. https://doi.org/10.1016/j.fuel.2022.124945.

Article  CAS  Google Scholar 

Camp JE. Bio-available solvent Cyrene: synthesis, derivatization, and applications. Chemsuschem. 2018;1:3048–55. https://doi.org/10.1002/cssc.201801420.

Article  CAS  Google Scholar 

Bennett R, Olesik SV. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography. Anal Chim Acta. 2017;960:151–9. https://doi.org/10.1016/j.aca.2017.01.006.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif