Ma S, He R, Jiang T, Hu Z, Ye Z, Mi W. Development of an isotope dilution mass spectrometry assay for the quantification of insulin based on signature peptide analysis. Anal Bioanal Chem. 2024;416(12):3085–96. https://doi.org/10.1007/s00216-024-05258-0.
Article CAS PubMed Google Scholar
Ito S, Torii Y, Chikamatsu S, Harada T, Yamaguchi S, Ogata S, Sonoda K, Wakayama K, Masuda T, Ohtsuki S. Oral coadministration of Zn-insulin with d-form small intestine-permeable cyclic peptide enhances its blood glucose-lowering effect in mice. Mol Pharm. 2021;18(4):1593–603. https://doi.org/10.1021/acs.molpharmaceut.0c01010.
Article CAS PubMed Google Scholar
Wang Y, Song W, Xue S, Sheng Y, Gao B, Dang Y, Zhang Y, Zhang GL. β-Cyclodextrin/dialdehyde glucan-coated keratin nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2024;276:133805. https://doi.org/10.1016/j.ijbiomac.2024.133805.
Article CAS PubMed Google Scholar
Dutta M, Cai J, Gui W, Patterson AD. A review of analytical platforms for accurate bile acid measurement. Anal Bioanal Chem. 2019;411:4541–9. https://doi.org/10.1007/s00216-019-01890-3.
Article CAS PubMed PubMed Central Google Scholar
Gao T, Hu S, Xu W, Wang Z, Guo T, Chen F, Ma Y, Zhu L, Chen F, Wang X, Zhou J. Targeted LC-MS/MS profiling of bile acids reveals primary/secondary bile acid ratio as a novel biomarker for necrotizing enterocolitis. Anal Bioanal Chem. 2024;416(1):287–97. https://doi.org/10.1007/s00216-023-05017-7.
Article CAS PubMed Google Scholar
Ge X, Huang S, Ren C, Zhao L. Taurocholic acid and glycocholic acid inhibit inflammation and activate farnesoid x receptor expression in LPS-stimulated zebrafish and macrophages. Molecules. 2023:28(5). https://doi.org/10.3390/molecules28052005.
Park J, Choi J, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145–54. https://doi.org/10.1016/j.biomaterials.2017.09.022.
Article CAS PubMed Google Scholar
Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, Qi J, Wu W. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–72. https://doi.org/10.1016/j.ejpb.2012.02.009.
Article CAS PubMed Google Scholar
Wang T, Shen L, Sun L, Zhang Y, Li H, Wang Y, Quan D. Why is glycocholic acid sodium salt better than deoxycholic acid sodium salt for the preparation of mixed micelle injections? Food Sci Nutr. 2019;7(11):3675–80. https://doi.org/10.1002/fsn3.1224.
Article CAS PubMed PubMed Central Google Scholar
Wu Y, Zhou A, Tang L, Lei Y, Tang B, Zhang L. Bile acids: key regulators and novel treatment targets for type 2 diabetes. J Diabetes Res. 2020;2020(1):6138438. https://doi.org/10.1155/2020/6138438.
Article CAS PubMed PubMed Central Google Scholar
Tomkin GH, Owens D. Obesity diabetes and the role of bile acids in metabolism. J Trans Intern Med. 2016;4(2):73–80. https://doi.org/10.1515/jtim-2016-0018.
Wang J, Dai X, Chang H, Gao Q, Guo J, Yang JZ, Zhang S, Shan CL. Interruption of bile acid enterohepatic circulation inhibits glycogen synthesis and promotes hepatocellular carcinoma progression. Genes Dis. 2023;10(6):2218–21. https://doi.org/10.1016/j.gendis.2023.02.026.
Article CAS PubMed PubMed Central Google Scholar
Jamuna NA, Kamalakshan A, Dandekar BR, Devassy AMC, Mondal J, Mandal S. Mechanistic insight into the amyloid fibrillation inhibition of hen egg white lysozyme by three different bile acids. J Phys Chem B. 2023;127(10):2198–213. https://doi.org/10.1021/acs.jpcb.3c00274.
Article CAS PubMed Google Scholar
Roy D, Maity NC, Kumar S, Maity A, Ratha BN, Biswas R, Maiti RC, Mandal AK, Bhunia A. Modulatory role of copper on hIAPP aggregation and toxicity in presence of insulin. Int J Biol Macromol. 2023;241:124470. https://doi.org/10.1016/j.ijbiomac.2023.124470.
Article CAS PubMed Google Scholar
Zhou C, Xia X, Liu Y, Li L. The preparation of a complex of insulin-phospholipids and their interaction mechanism. J Pept Sci. 2012;18(9):541–8. https://doi.org/10.1002/psc.2423.
Article CAS PubMed Google Scholar
Asayama S, Nagashima K, Negishi Y, Kawakami H. Byproduct-free intact modification of insulin by cholesterol end-modified poly(ethylene glycol) for in vivo protein delivery. Bioconjugate Chem. 2018;29(1):67–73. https://doi.org/10.1021/acs.bioconjchem.7b00593.
Xie H, Ma X, Lin W, Dong S, Liu Q, Chen Y, Gao Q. Linear dextrin as potential insulin delivery system: effect of degree of polymerization on the physicochemical properties of linear dextrin-insulin inclusion complexes. Polymers. 2021;13(23):4148. https://doi.org/10.3390/polym13234187.
Jing M, Bowser M. Methods for measuring aptamer-protein equilibria: a review. Anal Chim Acta. 2011;686(1–2):9–18. https://doi.org/10.1016/j.aca.2010.10.032.
Article CAS PubMed Google Scholar
Laganowsky A, Clemmer DE, Russell DH. Variable-temperature native mass spectrometry for studies of protein folding, stabilities, assembly, and molecular interactions. Annu Rev Biophys. 2022;51:63–77. https://doi.org/10.1146/anurev-biophys-102221-101121.
Article CAS PubMed Google Scholar
Frick M, Schwieger C, Schmidt C. Cover picture: liposomes as carriers of membrane-associated proteins and peptides for mass spectrometric analysis. Angew Chem Int Ed. 2021;60(20):11523–30. https://doi.org/10.1002/anie.202103931.
Bennett JL, Nguyen GTH, Donald WA. Protein-small molecule interactions in native mass spectrometry. Chem Rev. 2022;122(8):7327–85. https://doi.org/10.1021/acs.chemrev.1c00293.
Article CAS PubMed Google Scholar
Wang X, Liu Y, Wang H. A structure-differential binding method for elucidating the interactions between flavonoids and cytochrome-c by ESI-MS and molecular docking. Talanta. 2013;116:368–75. https://doi.org/10.1016/j.tlanta.2013.05.061.
Article CAS PubMed Google Scholar
Du Y, Zhang NB, Cui M, Liu ZQ, Liu SY. Studies of interaction between insulin and glutathione using electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(13):1519–26. https://doi.org/10.1002/rcm.6248.
Article CAS PubMed Google Scholar
Neya S, Nagai M, Nagatomo S, Hoshino T, Yoneda T, Kawaguchi AT. Utility of heme analogues to intentionally modify heme-globin interactions in myoglobin. BBA-Bioenergetics. 2016;1857(5):582–8. https://doi.org/10.1016/j.bbabio.2015.09.009.
Article CAS PubMed Google Scholar
Ren C, Bailey AO, VanderPorten E, Oh A, Phung W, Mulvihill MM, Harris SF, Liu YC, Han GH, Sandoval W. Quantitative determination of protein-ligand affinity by size exclusion chromatography directly coupled to high-resolution native mass spectrometry. Anal Chem. 2019;91(1):903–11. https://doi.org/10.1021/acs.analchem.8b03829.
Article CAS PubMed Google Scholar
Ventouri IK, Malheiro DBA, Voeten RLC, Kok S, Honing M, Somsen GW, Haselberg R. Probing protein denaturation during size-exclusion chromatography using native mass spectrometry. Anal Chem. 2020;92(6):4292–300. https://doi.org/10.1021/acs.analchem.9b04961.
Article CAS PubMed PubMed Central Google Scholar
Zheng X, Smith FB, Aly NA, et al. Evaluating the structural complexity of isomeric bile acids with ion mobility spectrometry. Anal Bioanal Chem. 2019;411:4673–82. https://doi.org/10.1007/s00216-019-01869-0.
Article CAS PubMed PubMed Central Google Scholar
Christofi E, Barran P. Ion mobility mass spectrometry (IM-MS) for structural biology: insights gained by measuring mass, charge, and collision cross section. Chem Rev. 2023;123(6):2902–49. https://doi.org/10.1021/acs.chemrev.2c00600.
留言 (0)