Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques

Ma S, He R, Jiang T, Hu Z, Ye Z, Mi W. Development of an isotope dilution mass spectrometry assay for the quantification of insulin based on signature peptide analysis. Anal Bioanal Chem. 2024;416(12):3085–96. https://doi.org/10.1007/s00216-024-05258-0.

Article  CAS  PubMed  Google Scholar 

Ito S, Torii Y, Chikamatsu S, Harada T, Yamaguchi S, Ogata S, Sonoda K, Wakayama K, Masuda T, Ohtsuki S. Oral coadministration of Zn-insulin with d-form small intestine-permeable cyclic peptide enhances its blood glucose-lowering effect in mice. Mol Pharm. 2021;18(4):1593–603. https://doi.org/10.1021/acs.molpharmaceut.0c01010.

Article  CAS  PubMed  Google Scholar 

Wang Y, Song W, Xue S, Sheng Y, Gao B, Dang Y, Zhang Y, Zhang GL. β-Cyclodextrin/dialdehyde glucan-coated keratin nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2024;276:133805. https://doi.org/10.1016/j.ijbiomac.2024.133805.

Article  CAS  PubMed  Google Scholar 

Dutta M, Cai J, Gui W, Patterson AD. A review of analytical platforms for accurate bile acid measurement. Anal Bioanal Chem. 2019;411:4541–9. https://doi.org/10.1007/s00216-019-01890-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao T, Hu S, Xu W, Wang Z, Guo T, Chen F, Ma Y, Zhu L, Chen F, Wang X, Zhou J. Targeted LC-MS/MS profiling of bile acids reveals primary/secondary bile acid ratio as a novel biomarker for necrotizing enterocolitis. Anal Bioanal Chem. 2024;416(1):287–97. https://doi.org/10.1007/s00216-023-05017-7.

Article  CAS  PubMed  Google Scholar 

Ge X, Huang S, Ren C, Zhao L. Taurocholic acid and glycocholic acid inhibit inflammation and activate farnesoid x receptor expression in LPS-stimulated zebrafish and macrophages. Molecules. 2023:28(5). https://doi.org/10.3390/molecules28052005.

Park J, Choi J, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145–54. https://doi.org/10.1016/j.biomaterials.2017.09.022.

Article  CAS  PubMed  Google Scholar 

Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, Qi J, Wu W. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–72. https://doi.org/10.1016/j.ejpb.2012.02.009.

Article  CAS  PubMed  Google Scholar 

Wang T, Shen L, Sun L, Zhang Y, Li H, Wang Y, Quan D. Why is glycocholic acid sodium salt better than deoxycholic acid sodium salt for the preparation of mixed micelle injections? Food Sci Nutr. 2019;7(11):3675–80. https://doi.org/10.1002/fsn3.1224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Zhou A, Tang L, Lei Y, Tang B, Zhang L. Bile acids: key regulators and novel treatment targets for type 2 diabetes. J Diabetes Res. 2020;2020(1):6138438. https://doi.org/10.1155/2020/6138438.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomkin GH, Owens D. Obesity diabetes and the role of bile acids in metabolism. J Trans Intern Med. 2016;4(2):73–80. https://doi.org/10.1515/jtim-2016-0018.

Article  Google Scholar 

Wang J, Dai X, Chang H, Gao Q, Guo J, Yang JZ, Zhang S, Shan CL. Interruption of bile acid enterohepatic circulation inhibits glycogen synthesis and promotes hepatocellular carcinoma progression. Genes Dis. 2023;10(6):2218–21. https://doi.org/10.1016/j.gendis.2023.02.026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jamuna NA, Kamalakshan A, Dandekar BR, Devassy AMC, Mondal J, Mandal S. Mechanistic insight into the amyloid fibrillation inhibition of hen egg white lysozyme by three different bile acids. J Phys Chem B. 2023;127(10):2198–213. https://doi.org/10.1021/acs.jpcb.3c00274.

Article  CAS  PubMed  Google Scholar 

Roy D, Maity NC, Kumar S, Maity A, Ratha BN, Biswas R, Maiti RC, Mandal AK, Bhunia A. Modulatory role of copper on hIAPP aggregation and toxicity in presence of insulin. Int J Biol Macromol. 2023;241:124470. https://doi.org/10.1016/j.ijbiomac.2023.124470.

Article  CAS  PubMed  Google Scholar 

Zhou C, Xia X, Liu Y, Li L. The preparation of a complex of insulin-phospholipids and their interaction mechanism. J Pept Sci. 2012;18(9):541–8. https://doi.org/10.1002/psc.2423.

Article  CAS  PubMed  Google Scholar 

Asayama S, Nagashima K, Negishi Y, Kawakami H. Byproduct-free intact modification of insulin by cholesterol end-modified poly(ethylene glycol) for in vivo protein delivery. Bioconjugate Chem. 2018;29(1):67–73. https://doi.org/10.1021/acs.bioconjchem.7b00593.

Article  CAS  Google Scholar 

Xie H, Ma X, Lin W, Dong S, Liu Q, Chen Y, Gao Q. Linear dextrin as potential insulin delivery system: effect of degree of polymerization on the physicochemical properties of linear dextrin-insulin inclusion complexes. Polymers. 2021;13(23):4148. https://doi.org/10.3390/polym13234187.

Article  CAS  Google Scholar 

Jing M, Bowser M. Methods for measuring aptamer-protein equilibria: a review. Anal Chim Acta. 2011;686(1–2):9–18. https://doi.org/10.1016/j.aca.2010.10.032.

Article  CAS  PubMed  Google Scholar 

Laganowsky A, Clemmer DE, Russell DH. Variable-temperature native mass spectrometry for studies of protein folding, stabilities, assembly, and molecular interactions. Annu Rev Biophys. 2022;51:63–77. https://doi.org/10.1146/anurev-biophys-102221-101121.

Article  CAS  PubMed  Google Scholar 

Frick M, Schwieger C, Schmidt C. Cover picture: liposomes as carriers of membrane-associated proteins and peptides for mass spectrometric analysis. Angew Chem Int Ed. 2021;60(20):11523–30. https://doi.org/10.1002/anie.202103931.

Article  CAS  Google Scholar 

Bennett JL, Nguyen GTH, Donald WA. Protein-small molecule interactions in native mass spectrometry. Chem Rev. 2022;122(8):7327–85. https://doi.org/10.1021/acs.chemrev.1c00293.

Article  CAS  PubMed  Google Scholar 

Wang X, Liu Y, Wang H. A structure-differential binding method for elucidating the interactions between flavonoids and cytochrome-c by ESI-MS and molecular docking. Talanta. 2013;116:368–75. https://doi.org/10.1016/j.tlanta.2013.05.061.

Article  CAS  PubMed  Google Scholar 

Du Y, Zhang NB, Cui M, Liu ZQ, Liu SY. Studies of interaction between insulin and glutathione using electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(13):1519–26. https://doi.org/10.1002/rcm.6248.

Article  CAS  PubMed  Google Scholar 

Neya S, Nagai M, Nagatomo S, Hoshino T, Yoneda T, Kawaguchi AT. Utility of heme analogues to intentionally modify heme-globin interactions in myoglobin. BBA-Bioenergetics. 2016;1857(5):582–8. https://doi.org/10.1016/j.bbabio.2015.09.009.

Article  CAS  PubMed  Google Scholar 

Ren C, Bailey AO, VanderPorten E, Oh A, Phung W, Mulvihill MM, Harris SF, Liu YC, Han GH, Sandoval W. Quantitative determination of protein-ligand affinity by size exclusion chromatography directly coupled to high-resolution native mass spectrometry. Anal Chem. 2019;91(1):903–11. https://doi.org/10.1021/acs.analchem.8b03829.

Article  CAS  PubMed  Google Scholar 

Ventouri IK, Malheiro DBA, Voeten RLC, Kok S, Honing M, Somsen GW, Haselberg R. Probing protein denaturation during size-exclusion chromatography using native mass spectrometry. Anal Chem. 2020;92(6):4292–300. https://doi.org/10.1021/acs.analchem.9b04961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng X, Smith FB, Aly NA, et al. Evaluating the structural complexity of isomeric bile acids with ion mobility spectrometry. Anal Bioanal Chem. 2019;411:4673–82. https://doi.org/10.1007/s00216-019-01869-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christofi E, Barran P. Ion mobility mass spectrometry (IM-MS) for structural biology: insights gained by measuring mass, charge, and collision cross section. Chem Rev. 2023;123(6):2902–49. https://doi.org/10.1021/acs.chemrev.2c00600.

留言 (0)

沒有登入
gif