Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem: PPB. 2010;48(12):909–30. https://doi.org/10.1016/j.plaphy.2010.08.016.
Article CAS PubMed Google Scholar
Shapiguzov A, Vainonen J, Wrzaczek M, Kangasjärvi J. ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci. 2012;3:292. https://doi.org/10.3389/fpls.2012.00292.
Article CAS PubMed PubMed Central Google Scholar
Quan L-J, Zhang B, Shi W-W, Li H-Y. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol. 2008;50(1):2–18. https://doi.org/10.1111/j.1744-7909.2007.00599.x.
Article CAS PubMed Google Scholar
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. Front Plant Sci. 2014;5:470. https://doi.org/10.3389/fpls.2014.00470.
Article PubMed PubMed Central Google Scholar
Minibayeva F, Beckett RP, Kranner I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry. 2015;112:122–9. https://doi.org/10.1016/j.phytochem.2014.06.008.
Article CAS PubMed Google Scholar
Elnemma EM. Spectrophotometric determination of hydrogen peroxide by a hydroquinone-aniline system catalyzed by molybdate. Bull Korean Chem Soc. 2004;25:127–9. https://doi.org/10.5012/BKCS.2004.25.1.127.
Si T, Wang X, Wu L, Zhao C, Zhang L, Huang M, Cai J, Zhou Q, Dai T, Zhu JK, Jiang D. Nitric oxide and hydrogen peroxide mediate wounding-induced freezing tolerance through modifications in photosystem and antioxidant system in wheat. Front Plant Sci. 2017;8:1284. https://doi.org/10.3389/fpls.2017.01284.
Article PubMed PubMed Central Google Scholar
Lin H-H, King Y-C, Li Y-C, Lin C-C, Chen Y-C, Lin J-S, Jeng S-T. The p38-like MAP kinase modulated H2O2 accumulation in wounding signaling pathways of sweet potato. Plant Sci. 2019;280:305–13. https://doi.org/10.1016/j.plantsci.2018.12.011.
Article CAS PubMed Google Scholar
Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell. 2001;13(1):179–91.
Article PubMed PubMed Central Google Scholar
Prasad A, Sedlářová M, Balukova A, Rác M, Pospíšil P. Reactive oxygen species as a response to wounding: In vivo imaging in Arabidopsis thaliana. Front Plant Sci. 2019;10:1660. https://doi.org/10.3389/fpls.2019.01660.
Apostol I, Heinstein PF, Low PS. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol. 1989;90(1):109–16. https://doi.org/10.1104/pp.90.1.109.
Article CAS PubMed PubMed Central Google Scholar
Shin SY, Park SJ, Kim HS, Jeon JH, Lee HJ. Wound-induced signals regulate root organogenesis in Arabidopsis explants. BMC Plant Biol. 2022;22(1):133. https://doi.org/10.1186/s12870-022-03524-w.
Article CAS PubMed PubMed Central Google Scholar
Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 2018;361(6407):1112–5. https://doi.org/10.1126/science.aat7744.
Article CAS PubMed Google Scholar
Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145(15):dev164376. https://doi.org/10.1242/dev.164376.
Article CAS PubMed Google Scholar
Sabina S, Jithesh MN. Mechanical wounding of leaf midrib and lamina elicits differential biochemical response and mitigates salinity induced damage in tomato. J Appl Hortic. 2021;23(1):3–10. https://doi.org/10.37855/jah.2021.v23i01.01.
Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993;262(5141):1883–6. https://doi.org/10.1126/science.8266079.
Article CAS PubMed Google Scholar
Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406(6797):731–4. https://doi.org/10.1038/35021067.
Article CAS PubMed Google Scholar
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The aquaporin TaPIP2;10 confers resistance to two fungal diseases in wheat. Phytopathology. 2021;111(12):2317–31. https://doi.org/10.1094/phyto-02-21-0048-r.
Article CAS PubMed Google Scholar
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B. Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. Int J Mol Sci. 2018;19(9):2812. https://doi.org/10.3390/ijms19092812.
Article CAS PubMed PubMed Central Google Scholar
Klassen NV, Marchington D, McGowan HCE. H2O2 determination by the I3- method and by KMnO4 titration. Anal Chem. 1994;66(18):2921–5. https://doi.org/10.1021/ac00090a020.
Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1–2):161–70. https://doi.org/10.1016/0022-1759(80)90340-3.
Article CAS PubMed Google Scholar
Segawa T, Kamidate T, Watanabe H. Determination of hydrogen peroxide with fluorescein chemiluminescence catalyzed by horseradish peroxidase. Anal Sci. 1990;6(5):763–4. https://doi.org/10.2116/analsci.6.763.
Takahashi A, Hashimoto K, Kumazawa S, Nakayama T. Determination of hydrogen peroxide by high-performance liquid chromatography with a cation-exchange resin gel column and electrochemical detector. Anal Sci. 1999;15(5):481–3. https://doi.org/10.2116/analsci.15.481.
Pundir CS, Deswal R, Narwal V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioprocess Biosyst Eng. 2018;41(3):313–29. https://doi.org/10.1007/s00449-017-1878-8.
Article CAS PubMed Google Scholar
Sun L, Pan Y, Wu J, Zhao D, Hui M, Zhu S, Zhu X, Li D, Song F, Zhang C. Paper-based analytical devices for the rapid and direct electrochemical detection of hydrogen peroxide in tomato leaves inoculated with Botrytis cinerea. Sensors (Basel). 2020;20(19):5512. https://doi.org/10.3390/s20195512.
Article CAS PubMed Google Scholar
Ren QQ, Yuan XJ, Huang XR, Wen W, Zhao YD, Chen W. In vivo monitoring of oxidative burst on aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode. Biosens Bioelectron. 2013;50:318–24. https://doi.org/10.1016/j.bios.2013.07.001.
Article CAS PubMed Google Scholar
Lima AS, Prieto KR, Santos CS, Paula Valerio H, Garcia-Ochoa EY, Huerta-Robles A, Beltran-Garcia MJ, Di Mascio P, Bertotti M. In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves. Biosens Bioelectron. 2018;99:108–14. https://doi.org/10.1016/j.bios.2017.07.039.
Article CAS PubMed Google Scholar
Ai F, Chen H, Zhang SH, Liu SY, Wei F, Dong XY, Cheng JK, Huang WH. Real-time monitoring of oxidative burst from single plant protoplasts using microelectrochemical sensors modified by platinum nanoparticles. Anal Chem. 2009;81(20):8453–8. https://doi.org/10.1021/ac901300b.
留言 (0)