Hughes K, Ford K, Bellis MA, Glendinning F, Harrison E, Passmore J. Health and financial costs of adverse childhood experiences in 28 European countries: a systematic review and meta-analysis. Lancet Public Health. 2021;6:e848–57.
Article PubMed PubMed Central Google Scholar
Stoltenborgh M, Bakermans‐Kranenburg MJ, Alink LRA, IJzendoorn MH. The prevalence of child maltreatment across the globe: review of a series of meta‐analyses. Child Abuse Rev. 2015;24:37–50.
Soares S, Rocha V, Kelly-Irving M, Stringhini S, Fraga S. Adverse childhood events and health biomarkers: a systematic review. Front Public Health. 2021;9:649825.
Article PubMed PubMed Central Google Scholar
Sara G, Lappin J. Childhood trauma: psychiatry’s greatest public health challenge? Lancet Public Health. 2017;2:e300–1.
Waehrer GM, Miller TR, Marques SCS, Oh DL, Harris NB. Disease burden of adverse childhood experiences across 14 states. Plos One. 2020;15:e0226134.
Article CAS PubMed PubMed Central Google Scholar
Dickson DA, Paulus JK, Mensah V, Lem J, Saavedra-Rodriguez L, Gentry A, et al. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl Psychiat. 2018;8:101.
Moog NK, Entringer S, Rasmussen JM, Styner M, Gilmore JH, Kathmann N, et al. Intergenerational effect of maternal exposure to childhood maltreatment on newborn brain anatomy. Biol Psychiat. 2018;83:120–7.
Roberts AL, Gladish N, Gatev E, Jones MJ, Chen Y, MacIsaac JL, et al. Exposure to childhood abuse is associated with human sperm DNA methylation. Transl Psychiat. 2018;8:194.
Scorza P, Duarte CS, Hipwell AE, Posner J, Ortin A, Canino G, et al. Research Review: Intergenerational transmission of disadvantage: epigenetics and parents’ childhoods as the first exposure. J Child Psychol Psyc. 2019;60:119–32.
Yehuda R, Lehrner A. Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry. 2018;17:243–57.
Article PubMed PubMed Central Google Scholar
Bohacek J, Farinelli M, Mirante O, Steiner G, Gapp K, Coiret G, et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol Psychiatr. 2015;20:621–31.
Bohacek J, Rassoulzadegan M. Sperm RNA: Quo vadis? Semin Cell Dev Biol. 2019;97:123–30.
Gapp K, van Steenwyk G, Germain PL, Matsushima W, Rudolph KLM, Manuella F, et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatr. 2020;25:2162–74.
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9.
Article CAS PubMed PubMed Central Google Scholar
Kretschmer M, Gapp K. Deciphering the RNA universe in sperm in its role as a vertical information carrier. Environ Epigenetics. 2022;8:dvac011.
Ghai M, Kader F. A review on epigenetic inheritance of experiences in humans. Biochem Genet. 2022;60:1107–40.
Article CAS PubMed Google Scholar
Maamar MB, Beck D, Nilsson E, McCarrey JR, Skinner MK. Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. Iscience. 2022;25:103786.
Article PubMed PubMed Central Google Scholar
Nestler EJ. Transgenerational epigenetic contributions to stress responses: fact or fiction? Plos Biol. 2016;14:e1002426.
Article PubMed PubMed Central Google Scholar
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment‐induced epigenetic inheritance in model organisms and humans. Biol Rev. 2017;92:2084–111.
Senaldi L, Smith-Raska M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin Epigenetics. 2020;12:136.
Article CAS PubMed PubMed Central Google Scholar
Jawaid A, Kunzi M, Mansoor M, Khan ZY, Abid A, Taha M, et al. Distinct microRNA signature in human serum and germline after childhood trauma. Medrxiv. 2020;2020.08.11.20168393.
Karlsson L, Tolvanen M, Scheinin NM, Uusitupa HM, Korja R, Ekholm E, et al. Cohort Profile: The FinnBrain Birth Cohort Study (FinnBrain). Int J Epidemiol. 2018;47:15–16j.
Salokangas RKR, Schultze-Lutter F, Patterson P, von Reventlow HG, Heinimaa M, From T, et al. Psychometric properties of the Trauma and Distress Scale, TADS, in an adult community sample in Finland. Eur J Psychotraumato. 2016;7:30062.
Karlsson H, Merisaari H, Karlsson L, Scheinin NM, Parkkola R, Saunavaara J, et al. Association of cumulative paternal early life stress with white matter maturation in newborns. JAMA Netw Open. 2020;3:e2024832.
Article PubMed PubMed Central Google Scholar
Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Brit J Psychiat. 1987;150:782–6.
Article CAS PubMed Google Scholar
Holi MM, Sammallahti PR, Aalberg VA. A Finnish validation study of the SCL‐90. Acta Psychiat Scand. 1998;97:42–6.
Article CAS PubMed Google Scholar
Danielsson O, Nano J, Pahkala K, Rospleszcz S, Lehtimäki T, Schlett CL, et al. Validity of fatty liver disease indices in the presence of alcohol consumption. Scand J Gastroenterol. 2022;57:1349–60.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011;17:10–2.
Shi J, Ko EA, Sanders KM, Chen Q, Zhou T. SPORTS1.0: A tool for annotating and profiling non-coding RNAs optimized for rRNA- and tRNA-derived small RNAs. Genom Proteom Bioinform. 2018;16:144–51.
Ha H, Song J, Wang S, Kapusta A, Feschotte C, Chen KC, et al. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. Bmc Genomics. 2014;15:545.
Article PubMed PubMed Central Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article CAS PubMed PubMed Central Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article CAS PubMed Google Scholar
Bock C, Halbritter F, Carmona FJ, Tierling S, Datlinger P, Assenov Y, et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34:726–37.
Pajares MJ, Palanca-Ballester C, Urtasun R, Alemany-Cosme E, Lahoz A, Sandoval J. Methods for analysis of specific DNA methylation status. Methods. 2021;187:3–12.
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article PubMed PubMed Central Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodol). 1995;57:289–300.
Bellis MA, Hughes K, Ford K, Rodriguez GR, Sethi D, Passmore J. Life course health consequences and associated annual costs of adverse childhood experiences across Europe and North America: a systematic review and meta-analysis. Lancet Public Health. 2019;4:e517–28.
留言 (0)