Aisen, P. S., Cummings, J., Jack, Jr., C. R., Morris, J. C., Sperling, R., Froelich, L., Jones, R. W., Dowsett, S. A., Matthews, B. R., & Raskin, J., et al. (2017). On the path to 2025: Understanding the Alzheimer’s disease continuum. Alzheimers Research & Therapy, 9, 60.
Ju, Y., & Tam, K. Y. (2022). Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regeneration Research, 17(3), 543–549.
Article CAS PubMed Google Scholar
Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., & Hossain, M. S., et al. (2022). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233.
Lee, H.-J., Kim, H.-L., Lee, D.-Y., Lee, D.-R., Choi, B.-K., & Yang, S.-H. (2021). Scrophularia buergeriana extract (Brainon) improves scopolamine-induced neuronal impairment and cholinergic dysfunction in mice through CREB-BDNF signaling pathway. Applied Sciences, 11(9), 4286.
Campos-Pena, V., Pichardo-Rojas, P., Sanchez-Barbosa, T., Ortiz-Islas, E., Rodriguez-Perez, C. E., Montes, P., Ramos-Palacios, G., Silva-Adaya, D., Valencia-Quintana, R., & Cerna-Cortes, J. F., et al. (2022). Amyloid β, lipid metabolism, basal cholinergic system, and therapeutics in Alzheimer’s Disease. International Journal of Molecular Sciences, 23(20), 12092.
Article CAS PubMed PubMed Central Google Scholar
Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology Neurosurgery and Psychiatry, 66(2), 137–147.
Article CAS PubMed PubMed Central Google Scholar
Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer’s Disease: Targeting the cholinergic system. Current Neuropharmacology, 14(1), 101–115.
Article CAS PubMed PubMed Central Google Scholar
Golde, T. E. (2006). Disease modifying therapy for AD? Journal of Neurochemistry, 99(3), 689–707.
Article CAS PubMed Google Scholar
Craig, L. A., Hong, N. S., & McDonald, R. J. (2011). Revisiting the cholinergic in the development of Alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 35(6), 1397–1409.
Article CAS PubMed Google Scholar
Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., & Fiebich, B. L., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421.
Article CAS PubMed PubMed Central Google Scholar
Venigalla, M., Sonego, S., Gyengesi, E., Sharman, M. J., & Munch, G. (2016). Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 95, 63–74.
Article CAS PubMed Google Scholar
Tabas, I., & Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science, 339(6116), 166–172.
Article CAS PubMed PubMed Central Google Scholar
Uddin, M. S., Kabir, M. T., Al Mamun, A., Barreto, G. E., Rashid, M., Perveen, A., & Ashraf, G. M. (2020). Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. International Immunopharmacology, 84, 106479.
Article CAS PubMed Google Scholar
Arbo, B. D., Schimith, L. E., dos Santos, M. G., & Hort, M. A. (2022). Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. European Journal of Pharmacology, 919, 174800.
Article CAS PubMed Google Scholar
de Craen, A. J. M., Gussekloo, J., Vrijsen, B., & Westendorp, R. G. J. (2005). Meta-analysis of nonsteroidal antiinflammatory drug use and risk of dementia. American Journal of Epidemiology, 161(2), 114–120.
Vlad, S. C., Miller, D. R., Kowall, N. W., & Felson, D. T. (2008). Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, 70(19), 1672–1677.
Article CAS PubMed Google Scholar
Boiangiu, R. S., Bagci, E., Dumitru, G., Hritcu, L., & Todirascu-Ciornea, E. (2022). Angelica purpurascens (Ave-Lall.) Gilli. Essential oil improved brain function via cholinergic modulation and antioxidant effects in the scopolamine-induced zebrafish (Danio rerio) model. Plants, 11(8), 1096.
Article CAS PubMed PubMed Central Google Scholar
McGeer, P. L., & McGeer, E. G. (2007). NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiology of Aging, 28(5), 639–647.
Article CAS PubMed Google Scholar
Imran, I., Javaid, S., Waheed, A., Rasool, M. F., Majeed, A., Samad, N., Saeed, H., Alqahtani, F., Ahmed, M. M., & Alaqil, F. A. (2021). Grewia asiatica berry juice diminishes anxiety, depression, and scopolamine-induced learning and memory impairment in behavioral experimental animal models. Frontiers in Nutrition, 7, 587367.
Article PubMed PubMed Central Google Scholar
Katiyar, P., Rathore, A. S., Banerjee, S., Nathani, S., Zahra, W., Singh, S. P., Sircar, D., & Roy, P. (2022). Wheatgrass extract imparts neuroprotective actions against scopolamine-induced amnesia in mice. Food & Function, 13(16), 8474–8488.
Kim, S., Kim, M.-S., Park, K., Kim, H.-J., Jung, S.-W., Nah, S.-Y., Han, J.-S., & Chung, C. (2016). Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. Journal of Ginseng Research, 40(1), 55–61.
Li, N., Liu, Y., Li, W., Zhou, L., Li, Q., Wang, X., & He, P. (2016). A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer’s disease. Journal of Ginseng Research, 40(1), 9–17.
Chen, C., Zhang, H., Xu, H., Zheng, Y., Wu, T., & Lian, Y. (2019). Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments. Journal of Ginseng Research, 43(4), 499–507.
Guo, M., Shao, S., Wang, D., Zhao, D., & Wang, M. (2021). Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food & Function, 12(2), 494–518.
Hu, Y., He, Y., Niu, Z., Shen, T., Zhang, J., Wang, X., Hu, W., & Cho, J. Y. (2022). A review of the immunomodulatory activities of polysaccharides isolated from Panax species. Journal of Ginseng Research, 46(1), 23–32.
Wan, D., Jiao, L., Yang, H., & Liu, S. (2012). Structural characterization and immunological activities of the water-soluble oligosaccharides isolated from the Panax ginseng roots. Planta, 235(6), 1289–1297.
Article CAS PubMed Google Scholar
Jiao, L., Wan, D., Zhang, X., Li, B., Zhao, H., & Liu, S. (2012). Characterization and immunostimulating effects on murine peritoneal macrophages of oligosaccharide isolated from Panax ginseng C.A. Meyer. Journal of Ethnopharmacology, 144(3), 490–496.
Article CAS PubMed Google Scholar
Jiao, L., Zhang, X., Li, B., Liu, Z., Wang, M., & Liu, S. (2014). Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng CA Meyer. International Journal of Biological Macromolecules, 65, 229–233.
Article CAS PubMed Google Scholar
Xu, T., Shen, X., Yu, H., Sun, L., Lin, W., & Zhang, C. (2016). Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent. Journal of Ginseng Research, 40(3), 211–219.
Ramos-Cejudo, J., Wisniewski, T., Marmar, C., Zetterberg, H., Blennow, K., de Leon, M. J., & Fossati, S. (2018). Traumatic brain injury and Alzheimer’s Disease: The cerebrovascular link. EBioMedicine, 28, 21–30.
留言 (0)