Water-Soluble Ginseng Oligosaccharides Prevent Scopolamine-Induced Cholinergic Dysfunction and Inflammatory Cytokine Overexpression

Aisen, P. S., Cummings, J., Jack, Jr., C. R., Morris, J. C., Sperling, R., Froelich, L., Jones, R. W., Dowsett, S. A., Matthews, B. R., & Raskin, J., et al. (2017). On the path to 2025: Understanding the Alzheimer’s disease continuum. Alzheimers Research & Therapy, 9, 60.

Article  Google Scholar 

Ju, Y., & Tam, K. Y. (2022). Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regeneration Research, 17(3), 543–549.

Article  CAS  PubMed  Google Scholar 

Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., & Hossain, M. S., et al. (2022). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233.

Article  CAS  Google Scholar 

Lee, H.-J., Kim, H.-L., Lee, D.-Y., Lee, D.-R., Choi, B.-K., & Yang, S.-H. (2021). Scrophularia buergeriana extract (Brainon) improves scopolamine-induced neuronal impairment and cholinergic dysfunction in mice through CREB-BDNF signaling pathway. Applied Sciences, 11(9), 4286.

Article  CAS  Google Scholar 

Campos-Pena, V., Pichardo-Rojas, P., Sanchez-Barbosa, T., Ortiz-Islas, E., Rodriguez-Perez, C. E., Montes, P., Ramos-Palacios, G., Silva-Adaya, D., Valencia-Quintana, R., & Cerna-Cortes, J. F., et al. (2022). Amyloid β, lipid metabolism, basal cholinergic system, and therapeutics in Alzheimer’s Disease. International Journal of Molecular Sciences, 23(20), 12092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology Neurosurgery and Psychiatry, 66(2), 137–147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer’s Disease: Targeting the cholinergic system. Current Neuropharmacology, 14(1), 101–115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golde, T. E. (2006). Disease modifying therapy for AD? Journal of Neurochemistry, 99(3), 689–707.

Article  CAS  PubMed  Google Scholar 

Craig, L. A., Hong, N. S., & McDonald, R. J. (2011). Revisiting the cholinergic in the development of Alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 35(6), 1397–1409.

Article  CAS  PubMed  Google Scholar 

Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., & Fiebich, B. L., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venigalla, M., Sonego, S., Gyengesi, E., Sharman, M. J., & Munch, G. (2016). Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 95, 63–74.

Article  CAS  PubMed  Google Scholar 

Tabas, I., & Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science, 339(6116), 166–172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uddin, M. S., Kabir, M. T., Al Mamun, A., Barreto, G. E., Rashid, M., Perveen, A., & Ashraf, G. M. (2020). Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. International Immunopharmacology, 84, 106479.

Article  CAS  PubMed  Google Scholar 

Arbo, B. D., Schimith, L. E., dos Santos, M. G., & Hort, M. A. (2022). Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. European Journal of Pharmacology, 919, 174800.

Article  CAS  PubMed  Google Scholar 

de Craen, A. J. M., Gussekloo, J., Vrijsen, B., & Westendorp, R. G. J. (2005). Meta-analysis of nonsteroidal antiinflammatory drug use and risk of dementia. American Journal of Epidemiology, 161(2), 114–120.

Article  PubMed  Google Scholar 

Vlad, S. C., Miller, D. R., Kowall, N. W., & Felson, D. T. (2008). Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, 70(19), 1672–1677.

Article  CAS  PubMed  Google Scholar 

Boiangiu, R. S., Bagci, E., Dumitru, G., Hritcu, L., & Todirascu-Ciornea, E. (2022). Angelica purpurascens (Ave-Lall.) Gilli. Essential oil improved brain function via cholinergic modulation and antioxidant effects in the scopolamine-induced zebrafish (Danio rerio) model. Plants, 11(8), 1096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGeer, P. L., & McGeer, E. G. (2007). NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiology of Aging, 28(5), 639–647.

Article  CAS  PubMed  Google Scholar 

Imran, I., Javaid, S., Waheed, A., Rasool, M. F., Majeed, A., Samad, N., Saeed, H., Alqahtani, F., Ahmed, M. M., & Alaqil, F. A. (2021). Grewia asiatica berry juice diminishes anxiety, depression, and scopolamine-induced learning and memory impairment in behavioral experimental animal models. Frontiers in Nutrition, 7, 587367.

Article  PubMed  PubMed Central  Google Scholar 

Katiyar, P., Rathore, A. S., Banerjee, S., Nathani, S., Zahra, W., Singh, S. P., Sircar, D., & Roy, P. (2022). Wheatgrass extract imparts neuroprotective actions against scopolamine-induced amnesia in mice. Food & Function, 13(16), 8474–8488.

Article  CAS  Google Scholar 

Kim, S., Kim, M.-S., Park, K., Kim, H.-J., Jung, S.-W., Nah, S.-Y., Han, J.-S., & Chung, C. (2016). Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. Journal of Ginseng Research, 40(1), 55–61.

Article  PubMed  Google Scholar 

Li, N., Liu, Y., Li, W., Zhou, L., Li, Q., Wang, X., & He, P. (2016). A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer’s disease. Journal of Ginseng Research, 40(1), 9–17.

Article  PubMed  Google Scholar 

Chen, C., Zhang, H., Xu, H., Zheng, Y., Wu, T., & Lian, Y. (2019). Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments. Journal of Ginseng Research, 43(4), 499–507.

Article  PubMed  Google Scholar 

Guo, M., Shao, S., Wang, D., Zhao, D., & Wang, M. (2021). Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food & Function, 12(2), 494–518.

Article  CAS  Google Scholar 

Hu, Y., He, Y., Niu, Z., Shen, T., Zhang, J., Wang, X., Hu, W., & Cho, J. Y. (2022). A review of the immunomodulatory activities of polysaccharides isolated from Panax species. Journal of Ginseng Research, 46(1), 23–32.

Article  PubMed  Google Scholar 

Wan, D., Jiao, L., Yang, H., & Liu, S. (2012). Structural characterization and immunological activities of the water-soluble oligosaccharides isolated from the Panax ginseng roots. Planta, 235(6), 1289–1297.

Article  CAS  PubMed  Google Scholar 

Jiao, L., Wan, D., Zhang, X., Li, B., Zhao, H., & Liu, S. (2012). Characterization and immunostimulating effects on murine peritoneal macrophages of oligosaccharide isolated from Panax ginseng C.A. Meyer. Journal of Ethnopharmacology, 144(3), 490–496.

Article  CAS  PubMed  Google Scholar 

Jiao, L., Zhang, X., Li, B., Liu, Z., Wang, M., & Liu, S. (2014). Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng CA Meyer. International Journal of Biological Macromolecules, 65, 229–233.

Article  CAS  PubMed  Google Scholar 

Xu, T., Shen, X., Yu, H., Sun, L., Lin, W., & Zhang, C. (2016). Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent. Journal of Ginseng Research, 40(3), 211–219.

Article  PubMed  Google Scholar 

Ramos-Cejudo, J., Wisniewski, T., Marmar, C., Zetterberg, H., Blennow, K., de Leon, M. J., & Fossati, S. (2018). Traumatic brain injury and Alzheimer’s Disease: The cerebrovascular link. EBioMedicine, 28, 21–30.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif