Fugh-Berman, A., & Myers, A. (2004). Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Experimental Biology and Medicine, 229(8), 698–704.
Article CAS PubMed Google Scholar
Dodonova, S. A., Zhidkova, E. M., Kryukov, A. A., Valiev, T. T., Kirsanov, K. I., Kulikov, E. P., Budunova, I. V., Yakubovskaya, M. G., & Lesovaya, E. A. (2023). Synephrine and its derivative compound A: Common and specific biological effects. International Journal of Molecular Sciences, 24(24), 17537.
Article CAS PubMed PubMed Central Google Scholar
Hong, N.-Y., Cui, Z.-G., Kang, H.-K., Lee, D.-H., Lee, Y.-K., & Park, D.-B. (2012). p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochemical and Biophysical Research Communications, 418(4), 720–724.
Article CAS PubMed Google Scholar
Carpéné, C., Galitzky, J., Fontana, E., Atgié, C., Lafontan, M., & Berlan, M. (1999). Selective activation of beta3-adrenoceptors by octopamine: Comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol, 359(4), 310–321.
Hamilton, B. S., & Doods, H. N. (2008). Identification of potent agonists acting at an endogenous atypical beta3-adrenoceptor state that modulate lipolysis in rodent fat cells. uropean Journal of Pharmacology, 580(1-2), 55–62.
Ishida, M., Takekuni, C., Nishi, K., & Sugahara, T. (2022). p-Synephrine suppresses inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and alleviates systemic inflammatory response syndrome in mice. Food Funct, 13(9), 5229–5239.
Article CAS PubMed Google Scholar
Wu, Q., Li, R., Soromou, L. W., Chen, N., Yuan, X., Sun, G., Li, B., & Feng, H. (2014). p-Synephrine suppresses lipopolysaccharide-induced acute lung injury by inhibition of the NF-κB signaling pathway. Inflammation Research, 63(6), 429–439.
Article CAS PubMed Google Scholar
Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25(3), 585–621.
Article CAS PubMed Google Scholar
de Magalhães, J. P., & Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 170, 2–9.
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593–602.
Article CAS PubMed Google Scholar
Lopes-Paciencia, S., Saint-Germain, E., Rowell, M. C., Ruiz, A. F., Kalegari, P., & Ferbeyre, G. (2019). The senescence-associated secretory phenotype and its regulation. Cytokine, 117, 15–22.
Article CAS PubMed Google Scholar
Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben-Porath, I., & Krizhanovsky, V. (2016). Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 7(1), 11190.
Article CAS PubMed PubMed Central Google Scholar
Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., Pirtskhalava, T., Giorgadze, N., Johnson, K. O., Giles, C. B., Wren, J. D., Niedernhofer, L. J., Robbins, P. D., & Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell, 15(3), 428–435.
Article CAS PubMed PubMed Central Google Scholar
Rysanek, D., Vasicova, P., Kolla, J. N., Sedlak, D., Andera, L., Bartek, J., & Hodny, Z. (2022). Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging, 14(16), 6381–6414.
Article CAS PubMed PubMed Central Google Scholar
Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journals of Gerontology, 11(3), 298–300.
Article CAS PubMed Google Scholar
Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C., & Epstein, C. J. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics, 11(4), 376–381.
Article CAS PubMed Google Scholar
Holley, A. K., Bakthavatchalu, V., Velez-Roman, J. M., & St Clair, D. K. (2011). Manganese superoxide dismutase: Guardian of the powerhouse. International Journal of Molecular Sciences, 12(10), 7114–7162.
Article CAS PubMed PubMed Central Google Scholar
Ishigami, A., Kondo, Y., Nanba, R., Ohsawa, T., Handa, S., Kubo, S., Akita, M., & Maruyama, N. (2004). SMP30 deficiency in mice causes an accumulation of neutral lipids and phospholipids in the liver and shortens the life span. Biochemical and Biophysical Research Communications, 315(3), 575–580.
Article CAS PubMed Google Scholar
Molnár, A., Pásztor, D. T., Tarcza, Z., & Merkely, B. (2023). Cells in atherosclerosis: Focus on cellular senescence from basic science to clinical practice. International Journal of Molecular Sciences, 24(24), 17129.
Article PubMed PubMed Central Google Scholar
Murakami, T., Inagaki, N., & Kondoh, H. (2022). Cellular senescence in diabetes mellitus: Distinct senotherapeutic strategies for adipose tissue and pancreatic β cells. Front Endocrinol, 13, 869414.
McHugh, D., & Gil, J. (2018). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65–77.
Article CAS PubMed PubMed Central Google Scholar
Rodier, F., Coppé, J.-P., Patil, C. K., Hoeijmakers, W. A., Muñoz, D. P., Raza, S. R., Freund, A., Campeau, E., Davalos, A. R., & Campisi, J. (2009). Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 11(8), 973–979.
Article CAS PubMed PubMed Central Google Scholar
Valavanidis, A., Vlachogianni, T., & Fiotakis, C. (2009). 8-hydroxy-2′ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health, Part C Environ Carcinog Ecotoxicol Rev, 27(2), 120–139.
Beauséjour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P., & Campisi, J. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO Journal, 22(16), 4212–4222.
Article PubMed PubMed Central Google Scholar
Tian, Y. T., Ma, L. P., Ding, C. Y., Liu, M. M., Wang, S. N., Tian, M., Gao, L., & Liu, Q. J. (2022). Autophagy regulates X-ray radiation-induced premature senescence through STAT3-Beclin1-p62 pathway in lung adenocarcinoma cells. International Journal of Radiation Biology, 98(9), 1432–1441.
Article CAS PubMed Google Scholar
Aratani, S., Tagawa, M., Nagasaka, S., Sakai, Y., Shimizu, A., & Tsuruoka, S. (2018). Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Scientific Reports, 8(1), 16812.
Article PubMed PubMed Central Google Scholar
Bianchessi, V., Badi, I., Bertolotti, M., Nigro, P., D’Alessandra, Y., Capogrossi, M. C., Zanobini, M., Pompilio, G., Raucci, A., & Lauri, A. (2015). The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in endothelial cells. Journal of Molecular and Cellular Cardiology, 81, 62–70.
Article CAS PubMed Google Scholar
Lin, Y. J., Zhen, Y. Z., Wei, J., Liu, B., Yu, Z. Y., & Hu, G. (2011). Effects of Rhein lysinate on H2O2-induced cellular senescence of human umbilical vascular endothelial cells. Acta Pharmacologica Sinica, 32(10), 1246–1252.
Article CAS PubMed PubMed Central Google Scholar
Kim, Y. J., Cha, H. J., Nam, K. H., Yoon, Y., Lee, H., & An, S. (2011). Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts. Experimental Dermatology, 20(12), 998–1003.
留言 (0)