Data-driven cluster analysis of lipids, inflammation, and aging in relation to new-onset type 2 diabetes mellitus

B. Zhou, Y. Lu, K. Hajifathalian, J. Bentham, M. Di Cesare, G. Danaei, H. Bixby, M.J. Cowan, M.K. Ali, C. Taddei, Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. Lancet 387(10027), 1513–1530 (2016)

Article  Google Scholar 

Y. Zheng, S.H. Ley, F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14(2), 88–98 (2018)

Article  PubMed  Google Scholar 

J.M. Forbes, M.E. Cooper, Mechanisms of diabetic complications. Physiol. Rev. 93(1), 137–188 (2013)

Article  PubMed  CAS  Google Scholar 

S.Y. Tan, J.L.M. Wong, Y.J. Sim, S.S. Wong, S.A.M. Elhassan, S.H. Tan, G.P.L. Lim, N.W.R. Tay, N.C. Annan, S.K. Bhattamisra, Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diab. Metab. Syndr. Clin. Res. Rev. 13(1), 364–372 (2019)

Google Scholar 

M.A. Reddy, E. Zhang, R. Natarajan, Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443–455 (2015)

Article  PubMed  CAS  Google Scholar 

M. Brownlee, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6), 1615–1625 (2005)

Article  PubMed  CAS  Google Scholar 

M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes. Nature 576(7785), 51–60 (2019)

Article  PubMed  CAS  Google Scholar 

U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, A. Larrea-Sebal, H. Siddiqi, K.B. Uribe, H. Ostolaza, C. Martín, Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21(17), 6275 (2020)

Article  PubMed  PubMed Central  CAS  Google Scholar 

S. Ley, S. Harris, P. Connelly, M. Mamakeesick, J. Gittelsohn, T. Wolever, R. Hegele, B. Zinman, A. Hanley, Utility of non‐high‐density lipoprotein cholesterol in assessing incident type 2 diabetes risk. Diab. Obes. Metab. 14(9), 821–825 (2012)

Article  CAS  Google Scholar 

A. von Eckardstein, R.A. Sibler, Possible contributions of lipoproteins and cholesterol to the pathogenesis of diabetes mellitus type 2. Curr. Opin. Lipidol. 22(1), 26–32 (2011)

Article  Google Scholar 

A. Tirosh, I. Shai, R. Bitzur, I. Kochba, D. Tekes-Manova, E. Israeli, T. Shochat, A. Rudich, Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diab. Care 31(10), 2032–2037 (2008)

Article  CAS  Google Scholar 

P.W. Wilson, J.B. Meigs, L. Sullivan, C.S. Fox, D.M. Nathan, R.B. D’Agostino,, Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch. Intern. Med. 167(10), 1068–1074 (2007).

Article  PubMed  Google Scholar 

L. Li, P. Li, J. Yang, X. Huang, H. Bao, C. Zhang, Y. Song, M. Zhao, M. Ji, Y. Wang, Lipid levels and new-onset diabetes in a hypertensive population: the China Stroke Primary Prevention Trial. Sci. Rep. 7(1), 7014 (2017)

Article  PubMed  PubMed Central  Google Scholar 

X. Bao, Y. Borné, L. Johnson, I.F. Muhammad, M. Persson, K. Niu, G. Engström, Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the ‘common soil’hypothesis. Cardiovasc. Diabetol. 17(1), 1–11 (2018)

Article  Google Scholar 

K.M. Peper, B. Guo, D. Leann Long, G. Howard, A.P. Carson, V.J. Howard, S.E. Judd, N.A. Zakai, A. Cherrington, M. Cushman, C-reactive protein and racial differences in type 2 diabetes incidence: the REGARDS study. J. Clin. Endocrinol. Metab. 107(6), e2523–e2531 (2022)

Article  PubMed  PubMed Central  Google Scholar 

B.S. Nayak, A. Sobrian, K. Latiff, D. Pope, A. Rampersad, K. Lourenço, N. Samuel, The association of age, gender, ethnicity, family history, obesity, and hypertension with type 2 diabetes mellitus in Trinidad. Diab. Metab. Syndrome: Clin. Res. Rev. 8(2), 91–95 (2014)

Article  Google Scholar 

M. Halim, A. Halim, The effects of inflammation, aging, and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & metabolic syndrome. Clin. Res. Rev. 13(2), 1165–1172 (2019)

Google Scholar 

Y. Kim, B.G. Han, Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int J. Epidemiol. 46(2), e20 (2017). https://doi.org/10.1093/ije/dyv316

Article  PubMed  Google Scholar 

D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7), 412–419 (1985). https://doi.org/10.1007/bf00280883

Article  PubMed  CAS  Google Scholar 

A.D, Association, Diagnosis, and classification of diabetes mellitus. Diab. Care 37(Supplement_1), S81–S90 (2014)

Article  Google Scholar 

B. Chen, P.C. Tai, R. Harrison, Y. Pan, Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis 2005 IEEE computational systems bioinformatics conference-workshops (CSBW'05), pp. 105–108. IEEE (2005)

T.-S. Xu, H.-D. Chiang, G.-Y. Liu, C.-W. Tan, Hierarchical K-means method for clustering large-scale advanced metering infrastructure data. IEEE Trans. Power Deliv. 32(2), 609–616 (2015)

Article  Google Scholar 

E. Ahlqvist, P. Storm, A. Käräjämäki, M. Martinell, M. Dorkhan, A. Carlsson, P. Vikman, R.B. Prasad, D.M. Aly, P. Almgren, Y. Wessman, N. Shaat, P. Spégel, H. Mulder, E. Lindholm, O. Melander, O. Hansson, U. Malmqvist, Å. Lernmark, K. Lahti, T. Forsén, T. Tuomi, A.H. Rosengren, L. Groop, Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diab. Endocrinol. 6(5), 361–369 (2018). https://doi.org/10.1016/s2213-8587(18)30051-2

Article  Google Scholar 

P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

Article  Google Scholar 

S. Chatterjee, K. Khunti, M.J. Davies, Type 2 diabetes. Lancet 389(10085), 2239–2251 (2017)

Article  PubMed  CAS  Google Scholar 

R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diab. Care 32(Suppl 2), S157 (2009)

Article  CAS  Google Scholar 

S. Lillioja, D.M. Mott, B.V. Howard, P.H. Bennett, H. Yki-Järvinen, D. Freymond, B.L. Nyomba, F. Zurlo, B. Swinburn, C. Bogardus, Impaired glucose tolerance as a disorder of insulin action. Longitud. Cross-Sect. Stud. Pima Indians N. Engl. J. Med. 318(19), 1217–1225 (1988). https://doi.org/10.1056/nejm198805123181901

Article  CAS  Google Scholar 

Y. Kim, A.L. Han, The correlation between triglyceride to HDL cholesterol ratio and metabolic syndrome, nutrition intake in Korean adults: Korean National Health and Nutrition Examination Survey 2016. J. Nutr. Health 52(3), 268–276 (2019)

Article  CAS  Google Scholar 

G.F. Lewis, K.D. Uffelman, L.W. Szeto, G. Steiner, Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes 42(6), 833–842 (1993). https://doi.org/10.2337/diab.42.6.833

Article  PubMed  CAS  Google Scholar 

R.D. Siegel, A. Cupples, E.J. Schaefer, P.W. Wilson, Lipoproteins, apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study. Metabolism 45(10), 1267–1272 (1996)

Article  PubMed  CAS  Google Scholar 

H.N. Ginsberg, L.-S. Huang, The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J. Cardiovasc. Risk 7(5), 325–331 (2000)

Article  PubMed  CAS  Google Scholar 

G. Kolovou, K. Anagnostopoulou, D. Cokkinos, Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad. Med. J. 81(956), 358–366 (2005)

Article  PubMed  PubMed Central  CAS  Google Scholar 

R. Gong, G. Luo, M. Wang, L. Ma, S. Sun, X. Wei, Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study. Endocr. Connect. 10(11), 1502–1512 (2021)

Article  PubMed  PubMed Central  Google Scholar 

H. Liu, J. Liu, J. Liu, S. Xin, Z. Lyu, X. Fu, Triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, a simple but effective indicator in predicting type 2 diabetes mellitus in older adults. Front. Endocrinol. 13, 828581 (2022). https://doi.org/10.3389/fendo.2022.828581

Article  Google Scholar 

B. Che, C. Zhong, R. Zhang, L. Pu, T. Zhao, Y. Zhang, L. Han, Triglyceride-glucose index and triglyceride to high-density lipoprotein cholesterol ratio as potential cardiovascular disease risk factors: an analysis of UK biobank data. Cardiovasc. Diabetol. 22(1), 34 (2023). https://doi.org/10.1186/s12933-023-01762-2

留言 (0)

沒有登入
gif