S.M. Ferrari, G. Elia, F. Ragusa, I. Ruffilli, C. La Motta, S.R. Paparo et al. Novel treatments for anaplastic thyroid carcinoma. Gland Surg. 9(1), S28–S42 (2020). https://doi.org/10.21037/gs.2019.10.18
Article PubMed PubMed Central Google Scholar
B. Han, R. Zheng, H. Zeng, S. Wang, K. Sun, R. Chen, L. Li, W. Wei, J. He, Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 4(1), 47–53 (2024). https://doi.org/10.1016/j.jncc.2024.01.006
Article PubMed PubMed Central Google Scholar
L. Boucai, M. Zafereo, M.E. Cabanillas, Thyroid cancer: a review. JAMA 331(5), 425–435 (2024). https://doi.org/10.1001/jama.2023.26348
Article CAS PubMed Google Scholar
B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020
Article PubMed PubMed Central Google Scholar
K.C. Bible, E. Kebebew, J. Brierley, J.P. Brito, M.E. Cabanillas, T.J. Clark Jr. et al. 2021 American Thyroid Association Guidelines for management of patients with anaplastic thyroid cancer. Thyroid 31(3), 337–386 (2021). https://doi.org/10.1089/thy.2020.0944
Article PubMed PubMed Central Google Scholar
N.G. Naydenov, J.E. Koblinski, A.I. Ivanov, Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cell Mol. Life Sci. 78(2), 621–633 (2021). https://doi.org/10.1007/s00018-020-03605-9
Article CAS PubMed Google Scholar
S. Budnar, K.B. Husain, G.A. Gomez, M. Naghibosadat, A. Varma, S. Verma et al. Anillin promotes cell contractility by cyclic resetting of RhoA residence kinetics. Dev. Cell 49(6), 894–906 e12 (2019). https://doi.org/10.1016/j.devcel.2019.04.031
Article CAS PubMed Google Scholar
K. Oegema, M.S. Savoian, T.J. Mitchison, C.M. Field, Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150(3), 539–552 (2000). https://doi.org/10.1083/jcb.150.3.539
Article CAS PubMed PubMed Central Google Scholar
C. Suzuki, Y. Daigo, N. Ishikawa, T. Kato, S. Hayama, T. Ito et al. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 65(24), 11314–11325 (2005). https://doi.org/10.1158/0008-5472.CAN-05-1507
Article CAS PubMed Google Scholar
W. Zhou, Z. Wang, N. Shen, W. Pi, W. Jiang, J. Huang et al. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol. Cell Biochem. 398(1-2), 11–19 (2015). https://doi.org/10.1007/s11010-014-2200-6
Article CAS PubMed Google Scholar
Y.F. Lian, Y.L. Huang, J.L. Wang, M.H. Deng, T.L. Xia, M.S. Zeng et al. Anillin is required for tumor growth and regulated by miR-15a/miR-16-1 in HBV-related hepatocellular carcinoma. Aging (Albany NY) 10(8), 1884–1901 (2018). https://doi.org/10.18632/aging.101510
Article CAS PubMed Google Scholar
A. Wang, H. Dai, Y. Gong, C. Zhang, J. Shu, Y. Luo et al. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis. J. Exp. Clin. Cancer Res. 38(1), 347 (2019). https://doi.org/10.1186/s13046-019-1340-7
Article CAS PubMed PubMed Central Google Scholar
P. Weinberger, S.R. Ponny, H. Xu, S. Bai, R. Smallridge, J. Copland et al. Cell cycle M-phase genes are highly upregulated in anaplastic thyroid carcinoma. Thyroid 27(2), 236–252 (2017). https://doi.org/10.1089/thy.2016.0285
Article CAS PubMed PubMed Central Google Scholar
E.C. Lessey, C. Guilluy, K. Burridge, From mechanical force to RhoA activation. Biochemistry 51(38), 7420–7432 (2012). https://doi.org/10.1021/bi300758e
Article CAS PubMed Google Scholar
E.A. Brooks, S. Galarza, M.F. Gencoglu, R.C. Cornelison, J.M. Munson, S.R. Peyton, Applicability of drug response metrics for cancer studies using biomaterials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374(1779), 20180226 (2019). https://doi.org/10.1098/rstb.2018.0226
Article CAS PubMed PubMed Central Google Scholar
S. Jansen, R. Gosens, T. Wieland, M. Schmidt, Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharm. Ther. 183, 1–21 (2018). https://doi.org/10.1016/j.pharmthera.2017.09.002
W.B. Zhong, S.P. Hsu, P.Y. Ho, Y.C. Liang, T.C. Chang, W.S. Lee, Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway. Biochem Pharm. 82(11), 1663–1672 (2011). https://doi.org/10.1016/j.bcp.2011.08.021
Article CAS PubMed Google Scholar
W.B. Zhong, Y.C. Tsai, L.H. Chin, J.H. Tseng, L.W. Tang, S. Horng et al. A synergistic anti-cancer effect of troglitazone and lovastatin in a human anaplastic thyroid cancer cell line and in a mouse xenograft model. Int. J. Mol. Sci. 19(7), 1834 (2018). https://doi.org/10.3390/ijms19071834
Article CAS PubMed PubMed Central Google Scholar
F. Wang, Z. Xiang, T. Huang, M. Zhang, W.B. Zhou, ANLN directly interacts with RhoA to promote doxorubicin resistance in breast cancer cells. Cancer Manag. Res. 12, 9725–9734 (2020). https://doi.org/10.2147/CMAR.S261828
Article CAS PubMed PubMed Central Google Scholar
J. Chen, Z. Li, X. Jia, W. Song, H. Wu, H. Zhu et al. Targeting anillin inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via impairing cytokinesis fidelity. Oncogene 41(22), 3118–3130 (2022). https://doi.org/10.1038/s41388-022-02274-1
Article CAS PubMed Google Scholar
S.T. Yu, Q. Zhong, R.H. Chen, P. Han, S.B. Li, H. Zhang et al. CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell Death Dis. 9(3), 371 (2018). https://doi.org/10.1038/s41419-018-0352-0
Article CAS PubMed PubMed Central Google Scholar
D. Huang, Y. Zeng, H.Y. Deng, B.D. Fu, Y. Ke, J.Y. Luo et al. SYTL5 promotes papillary thyroid carcinoma progression by enhancing activation of the NF-kappaB signaling pathway. Endocrinology 164(1), bqac187 (2022). https://doi.org/10.1210/endocr/bqac187
Article CAS PubMed Google Scholar
S.T. Yu, B.H. Sun, J.N. Ge, J.L. Shi, M.S. Zhu, Z.G. Wei et al. CRLF1-MYH9 interaction regulates proliferation and metastasis of papillary thyroid carcinoma through the ERK/ETV4 axis. Front Endocrinol. (Lausanne) 11, 535 (2020). https://doi.org/10.3389/fendo.2020.00535
Z. Pan, T. Xu, L. Bao, X. Hu, T. Jin, J. Chen et al. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol. Cancer 21(1), 190 (2022). https://doi.org/10.1186/s12943-022-01658-x
Article CAS PubMed PubMed Central Google Scholar
R.F. Rodrigues, L. Roque, T. Krug, V. Leite, Poorly differentiated and anaplastic thyroid carcinomas: chromosomal and oligo-array profile of five new cell lines. Br. J. Cancer 96(8), 1237–1245 (2007). https://doi.org/10.1038/sj.bjc.6603578
Article CAS PubMed PubMed Central Google Scholar
B. Bonhomme, Y. Godbert, G. Perot, A. Al Ghuzlan, S. Bardet, G. Belleannee et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid 27(5), 682–692 (2017). https://doi.org/10.1089/thy.2016.0254
留言 (0)