Anillin interacts with RhoA to promote tumor progression in anaplastic thyroid cancer by activating the PI3K/AKT pathway

S.M. Ferrari, G. Elia, F. Ragusa, I. Ruffilli, C. La Motta, S.R. Paparo et al. Novel treatments for anaplastic thyroid carcinoma. Gland Surg. 9(1), S28–S42 (2020). https://doi.org/10.21037/gs.2019.10.18

Article  PubMed  PubMed Central  Google Scholar 

B. Han, R. Zheng, H. Zeng, S. Wang, K. Sun, R. Chen, L. Li, W. Wei, J. He, Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 4(1), 47–53 (2024). https://doi.org/10.1016/j.jncc.2024.01.006

Article  PubMed  PubMed Central  Google Scholar 

L. Boucai, M. Zafereo, M.E. Cabanillas, Thyroid cancer: a review. JAMA 331(5), 425–435 (2024). https://doi.org/10.1001/jama.2023.26348

Article  CAS  PubMed  Google Scholar 

B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

Article  PubMed  PubMed Central  Google Scholar 

K.C. Bible, E. Kebebew, J. Brierley, J.P. Brito, M.E. Cabanillas, T.J. Clark Jr. et al. 2021 American Thyroid Association Guidelines for management of patients with anaplastic thyroid cancer. Thyroid 31(3), 337–386 (2021). https://doi.org/10.1089/thy.2020.0944

Article  PubMed  PubMed Central  Google Scholar 

N.G. Naydenov, J.E. Koblinski, A.I. Ivanov, Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cell Mol. Life Sci. 78(2), 621–633 (2021). https://doi.org/10.1007/s00018-020-03605-9

Article  CAS  PubMed  Google Scholar 

S. Budnar, K.B. Husain, G.A. Gomez, M. Naghibosadat, A. Varma, S. Verma et al. Anillin promotes cell contractility by cyclic resetting of RhoA residence kinetics. Dev. Cell 49(6), 894–906 e12 (2019). https://doi.org/10.1016/j.devcel.2019.04.031

Article  CAS  PubMed  Google Scholar 

K. Oegema, M.S. Savoian, T.J. Mitchison, C.M. Field, Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150(3), 539–552 (2000). https://doi.org/10.1083/jcb.150.3.539

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Suzuki, Y. Daigo, N. Ishikawa, T. Kato, S. Hayama, T. Ito et al. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 65(24), 11314–11325 (2005). https://doi.org/10.1158/0008-5472.CAN-05-1507

Article  CAS  PubMed  Google Scholar 

W. Zhou, Z. Wang, N. Shen, W. Pi, W. Jiang, J. Huang et al. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol. Cell Biochem. 398(1-2), 11–19 (2015). https://doi.org/10.1007/s11010-014-2200-6

Article  CAS  PubMed  Google Scholar 

Y.F. Lian, Y.L. Huang, J.L. Wang, M.H. Deng, T.L. Xia, M.S. Zeng et al. Anillin is required for tumor growth and regulated by miR-15a/miR-16-1 in HBV-related hepatocellular carcinoma. Aging (Albany NY) 10(8), 1884–1901 (2018). https://doi.org/10.18632/aging.101510

Article  CAS  PubMed  Google Scholar 

A. Wang, H. Dai, Y. Gong, C. Zhang, J. Shu, Y. Luo et al. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis. J. Exp. Clin. Cancer Res. 38(1), 347 (2019). https://doi.org/10.1186/s13046-019-1340-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Weinberger, S.R. Ponny, H. Xu, S. Bai, R. Smallridge, J. Copland et al. Cell cycle M-phase genes are highly upregulated in anaplastic thyroid carcinoma. Thyroid 27(2), 236–252 (2017). https://doi.org/10.1089/thy.2016.0285

Article  CAS  PubMed  PubMed Central  Google Scholar 

E.C. Lessey, C. Guilluy, K. Burridge, From mechanical force to RhoA activation. Biochemistry 51(38), 7420–7432 (2012). https://doi.org/10.1021/bi300758e

Article  CAS  PubMed  Google Scholar 

E.A. Brooks, S. Galarza, M.F. Gencoglu, R.C. Cornelison, J.M. Munson, S.R. Peyton, Applicability of drug response metrics for cancer studies using biomaterials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374(1779), 20180226 (2019). https://doi.org/10.1098/rstb.2018.0226

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Jansen, R. Gosens, T. Wieland, M. Schmidt, Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharm. Ther. 183, 1–21 (2018). https://doi.org/10.1016/j.pharmthera.2017.09.002

Article  CAS  Google Scholar 

W.B. Zhong, S.P. Hsu, P.Y. Ho, Y.C. Liang, T.C. Chang, W.S. Lee, Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway. Biochem Pharm. 82(11), 1663–1672 (2011). https://doi.org/10.1016/j.bcp.2011.08.021

Article  CAS  PubMed  Google Scholar 

W.B. Zhong, Y.C. Tsai, L.H. Chin, J.H. Tseng, L.W. Tang, S. Horng et al. A synergistic anti-cancer effect of troglitazone and lovastatin in a human anaplastic thyroid cancer cell line and in a mouse xenograft model. Int. J. Mol. Sci. 19(7), 1834 (2018). https://doi.org/10.3390/ijms19071834

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Wang, Z. Xiang, T. Huang, M. Zhang, W.B. Zhou, ANLN directly interacts with RhoA to promote doxorubicin resistance in breast cancer cells. Cancer Manag. Res. 12, 9725–9734 (2020). https://doi.org/10.2147/CMAR.S261828

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Chen, Z. Li, X. Jia, W. Song, H. Wu, H. Zhu et al. Targeting anillin inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via impairing cytokinesis fidelity. Oncogene 41(22), 3118–3130 (2022). https://doi.org/10.1038/s41388-022-02274-1

Article  CAS  PubMed  Google Scholar 

S.T. Yu, Q. Zhong, R.H. Chen, P. Han, S.B. Li, H. Zhang et al. CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell Death Dis. 9(3), 371 (2018). https://doi.org/10.1038/s41419-018-0352-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Huang, Y. Zeng, H.Y. Deng, B.D. Fu, Y. Ke, J.Y. Luo et al. SYTL5 promotes papillary thyroid carcinoma progression by enhancing activation of the NF-kappaB signaling pathway. Endocrinology 164(1), bqac187 (2022). https://doi.org/10.1210/endocr/bqac187

Article  CAS  PubMed  Google Scholar 

S.T. Yu, B.H. Sun, J.N. Ge, J.L. Shi, M.S. Zhu, Z.G. Wei et al. CRLF1-MYH9 interaction regulates proliferation and metastasis of papillary thyroid carcinoma through the ERK/ETV4 axis. Front Endocrinol. (Lausanne) 11, 535 (2020). https://doi.org/10.3389/fendo.2020.00535

Article  PubMed  Google Scholar 

Z. Pan, T. Xu, L. Bao, X. Hu, T. Jin, J. Chen et al. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol. Cancer 21(1), 190 (2022). https://doi.org/10.1186/s12943-022-01658-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

R.F. Rodrigues, L. Roque, T. Krug, V. Leite, Poorly differentiated and anaplastic thyroid carcinomas: chromosomal and oligo-array profile of five new cell lines. Br. J. Cancer 96(8), 1237–1245 (2007). https://doi.org/10.1038/sj.bjc.6603578

Article  CAS  PubMed  PubMed Central  Google Scholar 

B. Bonhomme, Y. Godbert, G. Perot, A. Al Ghuzlan, S. Bardet, G. Belleannee et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid 27(5), 682–692 (2017). https://doi.org/10.1089/thy.2016.0254

Article  CAS  PubMed 

留言 (0)

沒有登入
gif