Interplay between elevated RAB5B gene expression and insulin resistance among women with PCOS-insights from a case-control study

X.H. Xu et al. Genetic polymorphisms of melatonin receptors 1A and 1B may result in disordered lipid metabolism in obese patients with polycystic ovary syndrome. Mol. Med Rep. 19(3), 2220–2230 (2019)

CAS  PubMed  PubMed Central  Google Scholar 

R.P. Crespo et al. An update of genetic basis of PCOS pathogenesis. Arch. Endocrinol. Metab. 62(3), 352–361 (2018)

Article  PubMed  PubMed Central  Google Scholar 

R.S. Legro et al. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 95(25), 14956–14960 (1998)

Article  CAS  PubMed  PubMed Central  Google Scholar 

E. Diamanti-Kandarakis, H. Kandarakis, R.S. Legro, The role of genes and environment in the etiology of PCOS. Endocrine 30(1), 19–26 (2006)

Article  CAS  PubMed  Google Scholar 

E. Diamanti-Kandarakis, A. Dunaif, Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33(6), 981–1030 (2012)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Z.-J. Chen et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16. 3, 2p21 and 9q33. 3. Nat. Genet. 43(1), 55–59 (2011)

Article  PubMed  Google Scholar 

Y. Shi et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44(9), 1020–1025 (2012)

Article  CAS  PubMed  Google Scholar 

X.X. Chi et al. The regulatory effect of Genistein on granulosa cell in ovary of rat with PCOS through Bcl-2 and Bax signaling pathways. J. Vet. Med Sci. 80(8), 1348–1355 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Fornes et al. Changes in the expression of insulin signaling pathway molecules in endometria from polycystic ovary syndrome women with or without hyperinsulinemia. Mol. Med 16(3-4), 129–136 (2010)

Article  CAS  PubMed  Google Scholar 

K.L. Tessneer et al. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance. Endocrinology 155(9), 3315–3328 (2014)

Article  PubMed  PubMed Central  Google Scholar 

J.B. Pereira-Leal, M.C. Seabra, Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313(4), 889–901 (2001)

Article  CAS  PubMed  Google Scholar 

S.L. Schwartz et al. Rab GTPases at a glance. J. Cell Sci. 120(22), 3905–3910 (2007)

Article  CAS  PubMed  Google Scholar 

M.A. Sanchez-Garrido, M. Tena-Sempere, Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol. Metab. 35, 100937 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

D.B. Wilson, M.P. Wilson, Identification and subcellular localization of human rab5b, a new member of the ras-related superfamily of GTPases. J. Clin. Invest. 89(3), 996–1005 (1992)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Tulay et al. Investigation of microRNA expression and DNA repair gene transcripts in human oocytes and blastocysts. J. Assist. Reprod. Genet. 32, 1757–1764 (2015)

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Chen et al. Evaluation of the Efficacy of Sex Hormone–Binding Globulin in Insulin Resistance Assessment Based on HOMA-IR in Patients with PCOS. Reprod. Sci. 28(9), 2504–2513 (2021)

Article  CAS  PubMed  Google Scholar 

R. Azziz, E. Carmina, Z. Chen, A. Dunaif, J.S. Laven, R.S. Legro, D. Lizneva, B. Natterson-Horowtiz, H.J. Teede, B.O Yildiz. Polycystic ovary syndrome. Nat. Rev. Dis. Primers. 2, 16057 (2016)

S. Shorakae et al. Inter‐related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clin. Endocrinol. (Oxf.) 89(5), 628–633 (2018)

Article  CAS  PubMed  Google Scholar 

H.F. Escobar-Morreale, Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 14(5), 270–284 (2018)

Article  PubMed  Google Scholar 

R. Saxena et al. Han Chinese polycystic ovary syndrome risk variants in women of European ancestry: relationship to FSH levels and glucose tolerance. Hum. Reprod. 30(6), 1454–1459 (2015)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Yu et al. Association of single nucleotide polymorphisms in the RAB5B gene 3′UTR region with polycystic ovary syndrome in Chinese Han women. Biosci. Rep. 39(5), BSR20190292 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Bao et al. Cloning of Rab GTPases expressed in human skeletal muscle: studies in insulin-resistant subjects. Horm. Metab. Res 30(11), 656–662 (1998)

Article  CAS  PubMed  Google Scholar 

K. Zhu et al. Role of RAB5A in FSHR-mediated signal transduction in human granulosa cells. Reproduction 155(6), 505–514 (2018)

Article  CAS  PubMed  Google Scholar 

S. Bakhashab, N. Ahmed, Ahmed, Genotype based risk predictors for polycystic ovary syndrome in Western Saudi Arabia. Bioinformation 15(11), 812 (2019)

Article  PubMed  PubMed Central  Google Scholar 

T.M. Barber, P. Hanson, M.O. Weickert, S. Franks, J.A. Wass, Circulating levels of GDF15 in polycystic ovary syndrome: a biomarker of metabolic dysfunction? Clin. Endocrinol. 92(4), 311–317 (2020)

Google Scholar 

R.S. Legro, A.R. Kunselman, C.M. Stetter, C.L. Gnatuk, Biomarkers of metabolic dysfunction in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 106(1), 198–208 (2021). (2021)

Google Scholar 

留言 (0)

沒有登入
gif