Treatment of acromegaly-induced diabetes: an updated proposal

Moustaki M, Paschou SA, Xekouki P et al (2023) Secondary diabetes mellitus in acromegaly. Endocrine 81:1–15. https://doi.org/10.1007/s12020-023-03339-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esposito D, Boguszewski CL, Colao A et al (2024) Diabetes mellitus in patients with acromegaly: pathophysiology, clinical challenges and management. Nat Rev Endocrinol. https://doi.org/10.1038/s41574-024-00993-x

Article  PubMed  Google Scholar 

Maione L, Chanson P (2019) National acromegaly registries. Best Pract Res Clin Endocrinol Metab 33:101264. https://doi.org/10.1016/j.beem.2019.02.001

Article  PubMed  Google Scholar 

Biagetti B, Aulinas A, Casteras A et al (2020) HOMA-IR in acromegaly: a systematic review and meta-analysis. Pituitary. https://doi.org/10.1007/s11102-020-01092-6

Article  PubMed  Google Scholar 

Pascual-Corrales E, Biagetti B, Marazuela M et al (2024) Glucose metabolism outcomes after pituitary surgery in patients with acromegaly. Pituitary. https://doi.org/10.1007/s11102-024-01415-x

Article  PubMed  Google Scholar 

Brue T, Lindberg A, van der Jan A et al (2019) Diabetes in patients with acromegaly treated with pegvisomant: observations from acrostudy. Endocrine 63:563–572. https://doi.org/10.1007/s12020-018-1792-0

Article  CAS  PubMed  Google Scholar 

Salvatori R, Maffei P, Webb SM et al (2022) Patient-reported outcomes in patients with acromegaly treated with pegvisomant in the ACROSTUDY extension: a real-world experience. Pituitary 25:420–432. https://doi.org/10.1007/s11102-022-01206-2

Article  CAS  PubMed  Google Scholar 

Esposito D, Olsson DS, Franzén S et al (2022) Effect of diabetes on morbidity and mortality in patients with acromegaly. J Clin Endocrinol Metab 107:2483–2492. https://doi.org/10.1210/clinem/dgac400

Article  PubMed  PubMed Central  Google Scholar 

Taylor R (2024) Understanding the cause of type 2 diabetes. Lancet Diabetes Endocrinol S. https://doi.org/10.1016/S2213-8587(24)00157-8. 2213-8587(24)00157–8

Article  Google Scholar 

Chen C-J, Ironside N, Pomeraniec IJ et al (2017) Microsurgical versus endoscopic transsphenoidal resection for acromegaly: a systematic review of outcomes and complications. Acta Neurochir (Wien) 159:2193–2207. https://doi.org/10.1007/s00701-017-3318-6

Article  PubMed  Google Scholar 

Almeida JP, Ruiz-Treviño AS, Liang B et al (2018) Reoperation for growth hormone-secreting pituitary adenomas: report on an endonasal endoscopic series with a systematic review and meta-analysis of the literature. J Neurosurg 129:404–416. https://doi.org/10.3171/2017.2.JNS162673

Article  PubMed  Google Scholar 

Zamanipoor Najafabadi AH, van der Meulen M, Priego Zurita AL et al (2023) Starting point for benchmarking outcomes and reporting of pituitary adenoma surgery within the European Reference Network on Rare Endocrine conditions (Endo-ERN): results from a meta-analysis and survey study. Endocr Connect 12:e220349. https://doi.org/10.1530/EC-22-0349

Article  PubMed  Google Scholar 

Chen H-S, Wu T-E, Jap T-S et al (2011) Effects of long-acting release octreotide on glucose homeostasis in acromegaly patients after trans-sphenoidal surgery. Horm Metab Res 43:433–439. https://doi.org/10.1055/s-0031-1275703

Article  CAS  PubMed  Google Scholar 

Colao A, Bronstein MD, Freda P et al (2014) Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab 99:791–799. https://doi.org/10.1210/jc.2013-2480

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadelha MR, Bronstein MD, Brue T et al (2014) Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol 2:875–884. https://doi.org/10.1016/S2213-8587(14)70169-X

Article  CAS  PubMed  Google Scholar 

Schmid HA, Brue T, Colao A et al (2016) Effect of pasireotide on glucose- and growth hormone-related biomarkers in patients with inadequately controlled acromegaly. Endocrine 53:210–219. https://doi.org/10.1007/s12020-016-0895-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caron PJ, Petersenn S, Houchard A et al (2017) Glucose and lipid levels with lanreotide autogel 120 mg in treatment-naïve patients with acromegaly: data from the PRIMARYS study. Clin Endocrinol (Oxf) 86:541–551. https://doi.org/10.1111/cen.13285

Article  CAS  PubMed  Google Scholar 

Møller N, Jørgensen JOL (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 30:152–177. https://doi.org/10.1210/er.2008-0027

Article  CAS  PubMed  Google Scholar 

Olarescu NC, Heck A, Godang K et al (2016) The metabolic risk in patients newly diagnosed with acromegaly is related to Fat distribution and circulating adipokines and improves after treatment. Neuroendocrinology 103:197–206. https://doi.org/10.1159/000371818

Article  CAS  PubMed  Google Scholar 

Kopchick JJ, Berryman DE, Puri V et al (2020) The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol 16:135–146. https://doi.org/10.1038/s41574-019-0280-9

Article  PubMed  Google Scholar 

Freda PU, Shen W, Heymsfield SB et al (2008) Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J Clin Endocrinol Metab 93:2334–2343. https://doi.org/10.1210/jc.2007-2780

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petersen KF, Dufour S, Savage DB et al (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 104:12587–12594. https://doi.org/10.1073/pnas.0705408104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flannery C, Dufour S, Rabøl R et al (2012) Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 61:2711–2717. https://doi.org/10.2337/db12-0206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrera F, Uribe J, Olvares N et al (2024) The Janus of a disease: diabetes and metabolic dysfunction-associated fatty liver disease. Ann Hepatol 29:101501. https://doi.org/10.1016/j.aohep.2024.101501

Article  CAS  PubMed  Google Scholar 

Karaskov E, Scott C, Zhang L et al (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-Cell apoptosis. Endocrinology 147:3398–3407. https://doi.org/10.1210/en.2005-1494

Article  CAS  PubMed  Google Scholar 

Choi H-E, Kim DY, Choi MJ et al (2023) Tranilast protects pancreatic β-cells from palmitic acid-induced lipotoxicity via FoxO-1 inhibition. Sci Rep 13:101. https://doi.org/10.1038/s41598-022-25428-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biagetti B, Simó R (2021) GH/IGF-1 abnormalities and muscle impairment: from Basic Research to Clinical Practice. Int J Mol Sci 22. https://doi.org/10.3390/ijms22010415

Bergan-Roller HE, Sheridan MA (2018) The growth hormone signaling system: insights into coordinating the anabolic and catabolic actions of growth hormone. Gen Comp Endocrinol 258:119–133. https://doi.org/10.1016/j.ygcen.2017.07.028

Article  CAS  PubMed  Google Scholar 

Fieffe S, Morange I, Petrossians P et al (2011) Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French Acromegaly Registry. Eur J Endocrinol 164:877–884. https://doi.org/10.1530/EJE-10-1050

Article  CAS  PubMed 

留言 (0)

沒有登入
gif