Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological Reviews, 50, 353–380.
Article CAS PubMed PubMed Central Google Scholar
Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801.
Article CAS PubMed Google Scholar
Hirao, K., Yumoto, H., Takahashi, K., Mukai, K., Nakanishi, T., & Matsuo, T. (2009). Roles of TLR2, TLR4, NOD2, and NOD1 in pulp fibroblasts. Journal of Dental Research, 88, 762–767.
Article CAS PubMed Google Scholar
Barkhordar, R. A., Hayashi, C., & Hussain, M. Z. (1999). Detection of interleukin-6 in human dental pulp and periapical lesions. Endodontics and Dental Traumatology, 15, 26–27.
Article CAS PubMed Google Scholar
Huang, G. T., Potente, A. P., Kim, J. W., Chugal, N., & Zhang, X. (1999). Increased interleukin-8 expression in inflamed human dental pulps. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology Endodontology, 88, 214–220.
Adachi, T., Nakanishi, T., Yumoto, H., Hirao, K., Takahashi, K., Mukai, K., Nakae, H., & Matsuo, T. (2007). Caries-related bacteria and cytokines induce CXCL10 in dental pulp. Journal of Dental Research, 86, 1217–1222.
Article CAS PubMed Google Scholar
Tokuda, M., Sakuta, T., Fushuku, A., Torii, M., & Nagaoka, S. (2001). Regulation of interleukin-6 expression in human dental pulp cell cultures stimulated with Prevotella intermedia lipopolysaccharide. Journal of Endodontics, 27, 273–277.
Article CAS PubMed Google Scholar
Nagaoka, S., Tokuda, M., Sakuta, T., Taketoshi, Y., Tamura, M., Takada, H., & Kawagoe, M. (1996). Interleukin-8 gene expression by human dental pulp fibroblast in cultures stimulated with Prevotella intermedia lipopolysaccharide. Journal of Endodontics, 22, 9–12.
Article CAS PubMed Google Scholar
Nakanishi, T., Matsuo, T., & Ebisu, S. (1995). Quantitative analysis of immunoglobulins and inflammatory factors in human pulpal blood from exposed pulps. Journal of Endodontics, 21, 131–136.
Article CAS PubMed Google Scholar
Smith, W. L., & Dewitt, D. L. (1996). Prostaglandin endoperoxide H synthases-1 and -2. Advances in Immunology, 62, 167–215.
Article CAS PubMed Google Scholar
Lin, S. K., Kuo, M. Y., Wang, J. S., Lee, J. J., Wang, C. C., Huang, S., Shun, C. T., & Hong, C. Y. (2002). Differential regulation of interleukin-6 and inducible cyclooxygenase gene expression by cytokines through prostaglandin-dependent and -independent mechanisms in human dental pulp fibroblasts. Journal of Endodontics, 28, 197–201.
Chang, Y. C., Yang, S. F., Huang, F. M., Liu, C. M., Tai, K. W., & Hsieh, Y. S. (2003). Proinflammatory cytokines induce cyclooxygenase-2 mRNA and protein expression in human pulp cell cultures. Journal of Endodontics, 29, 201–204.
Chang, Y. C., Huang, F. M., Yang, S. F., Liu, C. M., Lai, C. C., Chan, Y., & Hsieh, Y. S. (2003). Induction of cyclooxygenase-2 mRNA and protein expression in human pulp cells stimulated with black-pigmented bacteroides. Journal of Endodontics, 29, 240–243.
Park, C., Lee, S. Y., Kim, H. J., Park, K., Kim, J. S., & Lee, S. J. (2010). Synergy of TLR2 and H1R on Cox-2 activation in pulpal cells. Journal of Dental Research, 89, 180–185.
Article CAS PubMed Google Scholar
Yuasa, K., Tada, K., Harita, G., Fujimoto, T., Tsukayama, M., & Tsuji, A. (2012). Sudachitin, a polymethoxyflavone from Citrus sudachi, suppresses lipopolysaccharide-induced inflammatory responses in mouse macrophage-like RAW264 cells. Bioscience, Biotechnology, and Biochemistry, 76, 598–600.
Article CAS PubMed Google Scholar
Ohyama, Y., Ito, J., Kitano, V. J., Shimada, J., & Hakeda, Y. (2018). The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors. PLoS ONE, 13, e0191192.
Article PubMed PubMed Central Google Scholar
Mitani, M., Minatogawa, Y., Nakamoto, A., Nakamoto, M., Shuto, E., Nii, Y., & Sakai, T. (2019). Sudachitin, polymethoxyflavone from Citrus sudachi, enhances antigen-specific cellular and humoral immune responses in BALB/c mice. Journal of Clinical Biochemistry Nutrition, 64, 158–163.
Article CAS PubMed Google Scholar
Shikishima, Y., Tsutsumi, R., Kawakami, A., Miura, H., Nii, Y., & Sakaue, H. (2021). Sudachi peel extract powder including the polymethoxylated flavone sudachitin improves visceral fat content in individuals at risk for developing diabetes. Food Science & Nutrition, 9, 4076–4084.
Tsutsumi, R., Yoshida, T., Nii, Y., Okahisa, N., Iwata, S., Tsukayama, M., Hashimoto, R., Taniguchi, Y., Sakaue, H., Hosaka, T., Shuto, E., & Sakai, T. (2014). Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutrition & Metabolism, 11, 32.
Hosokawa, Y., Hosokawa, I., Ozaki, K., & Matsuo, T. (2019). Sudachitin inhibits matrix metalloproteinase-1 and -3 production in tumor necrosis factor-α-stimulated human periodontal ligament cells. Inflammation., 42, 1456–1462.
Article CAS PubMed Google Scholar
Hosokawa, Y., Hosokawa, I., Ozaki, K., & Matsuo, T. (2021). The polymethoxy flavonoid sudachitin inhibits interleukin-1β-induced inflammatory mediator production in human periodontal ligament cells. BioMed Research International, 2021, 1–6.
Abe, T., Sato, T., & Murotomi, K. (2023). Sudachitin and nobiletin stimulate lipolysis via activation of the cAMP/PKA/HSL pathway in 3T3-L1 adipocytes. Foods, 12, 1947.
Article CAS PubMed PubMed Central Google Scholar
Elsalhy, M., Azizieh, F., & Raghupathy, R. (2013). Cytokines as diagnostic markers of pulpal inflammation. International Endodontic Journal, 46, 573–580.
Article CAS PubMed Google Scholar
Vane, J. R., & Botting, R. M. (1998). Anti-inflammatory drugs and their mechanism of action. Inflammation Research, 47, 78–87.
Nakanishi, T., Shimizu, H., Hosokawa, Y., & Matsuo, T. (2001). An immunohistological study on cyclooxygenase-2 in human dental pulp. Journal of Endodontics, 27, 385–388.
Article CAS PubMed Google Scholar
Crofford, L. J. (1997). COX-1 and COX-2 tissue expression: implications and predictions. The Journal of Rheumatology Supplements, 49, 15–19.
Simon, L. S. (1999). Role and regulation of cyclooxygenase-2 during inflammation. The American Journal of Medicine, 106, 37s–42s.
Article CAS PubMed Google Scholar
Soden, R. I., Botero, T. M., Hanks, C. T., & Nör, J. E. (2009). Angiogenic signaling triggered by cariogenic bacteria in pulp cells. Journal of Dental Research, 88, 835–840.
Article CAS PubMed Google Scholar
Hirao, K., Yumoto, H., Nakanishi, T., Mukai, K., Takahashi, K., Takegawa, D., & Matsuo, T. (2010). Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. Life Sciences, 86, 654–660.
Article CAS PubMed Google Scholar
Cho, J. A., Kim, T. J., Moon, H. J., Kim, Y. J., Yoon, H. K., & Seong, S. Y. (2018). Cardiolipin activates antigen-presenting cells via TLR2-PI3K-PKN1-AKT/p38-NF-κB signaling to prime antigen-specific naïve T cells in mice. European Journal of Immunology, 48, 777–790.
Article CAS PubMed Google Scholar
Zheng, X. Q., Kong, X. Q., He, Y., Wang, Y. J., Xie, L., Liu, L. L., Lin, L. R., & Yang, T. C. (2023). Treponema pallidum recombinant protein Tp47 enhanced interleukin-6 secretion in human dermal fibroblasts through the toll-like receptor 2 via the p38, PI3K/Akt, and NF-κB signalling pathways. Biochimica et Biophysica Acta Molecular Cell Research, 1870, 119540.
留言 (0)