Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel

De Belly, H., Paluch, E. K., & Chalut, K. J. (2022). Interplay between mechanics and signalling in regulating cell fate. Nature Reviews Molecular Cell Biology, 23(7), 465–480.

Article  PubMed  Google Scholar 

Du, H., Bartleson, J. M., Butenko, S., Alonso, V., Liu, W. F., Winer, D. A., & Butte, M. J. (2023). Tuning immunity through tissue mechanotransduction. Nature Reviews Immunology, 23(3), 174–188.

Article  CAS  PubMed  Google Scholar 

Bachmann, M., Kukkurainen, S., Hytönen, V. P., & Wehrle-Haller, B. (2019). Cell adhesion by integrins. Physiological Reviews, 99(4), 1655–1699.

Article  CAS  PubMed  Google Scholar 

Kanchanawong, P., & Calderwood, D. A. (2023). Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nature Reviews Molecular Cell Biology, 24(2), 142–161.

Article  CAS  PubMed  Google Scholar 

Goult, B. T., Brown, N. H., & Schwartz, M. A. (2021). Talin in mechanotransduction and mechanomemory at a glance. Journal of Cell Science, 134(20), jcs258749.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox, T. R., & Erler, J. T. (2011). Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 4(2), 165–178.

Article  CAS  Google Scholar 

Butcher, D. T., Alliston, T., & Weaver, V. M. (2009). A tense situation: forcing tumour progression. Nature Reviews Cancer, 9(2), 108–122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huynh, J., Nishimura, N., Rana, K., Peloquin, J. M., Califano, J. P., Montague, C. R., King, M. R., Schaffer, C. B., & Reinhart-King, C. A. (2011). Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Science Translational Medicine, 3(112), 112ra122.

Article  PubMed  PubMed Central  Google Scholar 

Loessner, D., Meinert, C., Kaemmerer, E., Martine, L. C., Yue, K., Levett, P. A., Klein, T. J., Melchels, E. P. W., Khademhosseini, A., & Hutmacher, D. W. (2016). Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nature Protocols, 11(4), 727–746.

Article  CAS  PubMed  Google Scholar 

Bupphathong, S., Quiroz, C., Huang, W., Chung, P. F., Tao, H. Y., & Lin, C. H. (2022). Gelatin methacrylate hydrogel for tissue engineering applications – a review on material modifications. Pharmaceuticals, 15(2), 171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakr, M. A., Sakthivel, K., Hossain, T., Shin, S. R., Siddiqua, S., Kim, J., & Kim, K. (2022). Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Journal of Biomedical Materials Research Part A, 110(3), 708–724.

Article  CAS  PubMed  Google Scholar 

Im, G. B., & Lin, R. Z. (2022). Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Frontiers in Bioengineering and Biotechnology, 10, 1053491.

Article  PubMed  PubMed Central  Google Scholar 

Kim, Y. H., Dawson, J. I., Oreffo, R. O. C., Tabata, Y., Kumar, D., Aparicio, C., & Mutreja, I. (2022). Gelatin methacryloyl hydrogels for musculoskeletal tissue regeneration. Bioengineering, 9(7), 332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, J., Sun, Y., Gao, Q., He, C., Yao, K., Wang, T., Xie, M., Yu, K., Nie, J., Chen, Y., & He, Y. (2023). Gelatin methacryloyl hydrogel, from standardization, performance, to biomedical application. Advanced Healthcare Materials, 12(23), e2300395.

Article  PubMed  Google Scholar 

Silver, R., Silverman, A. J., Vitković, L., & Lederhendler, I. I. (1996). Mast cells in the brain: evidence and functional significance. Trends in Neuroscience, 19(1), 25–31.

Article  CAS  Google Scholar 

Ramirez-Garcia-Luna, J. L., Wong, T. H., Chan, D., Al-Saran, Y., Awlia, A., Abou-Rjeili, M., Ouellet, S., Akoury, E., Lemarié, C. A., Henderson, J. E., & Martineau, P. A. (2019). Defective bone repair in diclofenac treated C57Bl6 mice with and without lipopolysaccharide induced systemic inflammation. Journal of Cellular Physiology, 234(3), 3078–3087.

Article  CAS  PubMed  Google Scholar 

Nagata, Y., & Suzuki, R. (2022). FcεRI: a master regulator of mast cell functions. Cells, 11(4), 622.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pastwińska, J., Żelechowska, P., Walczak-Drzewiecka, A., Brzezińska-Błaszczyk, E., & Dastych, J. (2020). The art of mast cell adhesion. Cells, 9(12), 2664.

Article  PubMed  PubMed Central  Google Scholar 

Rujitharanawong, C., Yoodee, S., Sueksakit, K., Peerapen, P., Tuchinda, P., Kulthanan, K., & Thongboonkerd, V. (2022). Systematic comparisons of various markers for mast cell activation in RBL-2H3 cells. Cell Tissue Research, 390(3), 413–428.

Article  CAS  PubMed  Google Scholar 

Teshima, R., Suzuki, K., Ikebuchi, H., & Terao, T. (1986). Possible involvement of phosphorylation of a 36,000-dalton protein of rat basophilic leukemia (RBL-2H3) cell membranes in serotonin release. Molecular Immunology, 23(3), 279–284.

Article  CAS  PubMed  Google Scholar 

So, C. L., Meinert, C., Xia, Q., Robitaille, M., Roberts-Thomson, S. J., & Monteith, G. R. (2022). Increased matrix stiffness suppresses ATP-induced sustained Ca2+ influx in MDA-MB-231 breast cancer cells. Cell Calcium, 104, 102569.

Article  CAS  PubMed  Google Scholar 

Shiki, A., Inoh, Y., Yokawa, S., & Furuno, T. (2019). Inhibition of degranulation in mast cells attached to a hydrogel through defective microtubule tracts. Experimental Cell Research, 381(2), 248–255.

Article  CAS  PubMed  Google Scholar 

Suzuki, R., Inoh, Y., Yokawa, S., Suzuki, R., Furuno, T., & Hirashima, N. (2019). Monomer hapten and hapten-specific IgG inhibit mast cell activation evoked by multivalent hapten with different mechanisms. European Journal of Immunology, 49(12), 2172–2183.

Article  CAS  PubMed  Google Scholar 

Inoh, Y., Hirose, T., Yokoi, A., Yokawa, S., & Furuno, T. (2020). Effects of lipid composition in cationic liposomes on suppression of mast cell activation. Chemistry and Physics of Lipids, 231, 104948.

Article  CAS  PubMed  Google Scholar 

Suzuki, R., Inoh, Y., Yokawa, S., Furuno, T., & Hirashima, N. (2021). Receptor dynamics regulates actin polymerization state through phosphorylation of cofilin in mast cells. Biochemical and Biophysical Research Communications, 534, 714–719.

Article  CAS  PubMed  Google Scholar 

Grodzki, A. C., Pástor, M. V., Sousa, J. F., Oliver, C., & Jamur, M. C. (2003). Differential expression of integrin subunits on adherent and nonadherent mast cells. Brazilian Journal of Medical and Biological Research, 36(8), 1101–1109.

Article  CAS  PubMed  Google Scholar 

Oka, T., Sato, K., Hori, M., Ozaki, H., & Karaki, H. (2002). FcεRI cross-linking-induced actin assembly mediates calcium signalling in RBL-2H3 mast cells. British Journal of Pharmacology, 136(6), 837–846.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishida, K., Yamasaki, S., Ito, Y., Kabu, K., Hattori, K., Tezuka, T., Nishizumi, H., Kitamura, D., Goitsuka, R., Geha, R. S., Yamamoto, T., Yagi, T., & Hirano, T. (2005). FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. Journal of Cell Biology, 170(1), 115–126.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mei, F., Guo, Y., Wang, Y., Zhou, Y., Heng, B. C., Xie, M., Huang, X., Zhang, S., Ding, S., Liu, F., Deng, X., Chen, L., & Yang, C. (2024). Matrix stiffness regulates macrophage polarisation via the Piezo1-YAP signalling axis. Cell Prolifereation, 57(8), e13640.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif