Development of a Drug Safety Signal Detection Reference Set Using Japanese Safety Information

CIOMS Working Group VIII. Practical Aspects of Signal Detection in Pharmacovigilance. CIOMS; 2010.

Lavertu A, Vora B, Giacomini KM, Altman R, Rensi S. A New Era in Pharmacovigilance: Toward Real-World Data and Digital Monitoring. Clin Pharmacol Ther. 2021;109(5):1197–202. https://doi.org/10.1002/cpt.2172.

Article  PubMed  PubMed Central  Google Scholar 

Bate A, Evans SJW. Quantitative signal detection using spontaneous ADR reporting: QUANTITATIVE SIGNAL DETECTION. Pharmacoepidem Drug Safe. 2009;18(6):427–36. https://doi.org/10.1002/pds.1742.

Article  CAS  Google Scholar 

European Medicines Agency (EMA). Guideline on Good Pharmacovigilance Practices (GVP) Module IX—Signal Management (Rev 1). Accessed October 10. 2024. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-ix-signal-management-rev-1_en.pdf

Food and Drug Administration (FDA). Guidance for Industry Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment. Accessed October 10. 2024. https://www.fda.gov/media/71546/download

Coloma PM, Avillach P, Salvo F, et al. A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 2012;36(1):13–23. https://doi.org/10.1007/s40264-012-0002-x.

Article  CAS  Google Scholar 

Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a Reference Set to Support Methodological Research in Drug Safety. Drug Saf. 2013;36(S1):33–47. https://doi.org/10.1007/s40264-013-0097-8.

Article  Google Scholar 

Harpaz R, Odgers D, Gaskin G, et al. A time-indexed reference standard of adverse drug reactions. Sci Data. 2014;1(1):140043. https://doi.org/10.1038/sdata.2014.43.

Article  PubMed  PubMed Central  Google Scholar 

Osokogu OU, Fregonese F, Ferrajolo C, et al. Pediatric Drug Safety Signal Detection: A New Drug–Event Reference Set for Performance Testing of Data-Mining Methods and Systems. Drug Saf. 2015;38(2):207–17. https://doi.org/10.1007/s40264-015-0265-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kontsioti E, Maskell S, Dutta B, Pirmohamed M. A reference set of clinically relevant adverse drug-drug interactions. Sci Data. 2022;9(1):72. https://doi.org/10.1038/s41597-022-01159-y.

Article  PubMed  PubMed Central  Google Scholar 

Pharmaceuticals and Medical Devices Agency. Information on case reports with suspected side effects. https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0005.html

Nomura K, Takahashi K, Hinomura Y, et al. Effect of database profile variation on drug safety assessment: an analysis of spontaneous adverse event reports of Japanese cases. Drug Des Devel Ther. 2015;9:3031–41. https://doi.org/10.2147/DDDT.S81998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosomi K, Arai M, Fujimoto M, Takada M. Applied Data Mining of the FDA Adverse Event Reporting System, FAERS, and the Japanese Adverse Drug Event Report Database, JADER: Signal Detection of Adverse Events by New Quinolones. Japanese J Drug Inf. 2015;17(1):15–20. https://doi.org/10.11256/jjdi.17.15

Pharmaceuticals and Medical Devices Agency. Risk Management Plan (RMP). https://www.pmda.go.jp/english/safety/info-services/drugs/rmp/0001.html

ICH Harmonised Tripartite Guideline Development Safety Update Report E2F. 2010. https://database.ich.org/sites/default/files/E2F_Guideline.pdf

Sato H, Ohira E, Murakami T, et al. Comparison between Risks Listed in the Risk Management Plan and the Product Labeling of the Drug Package Insert. Japanese J Drug Inf. 2015;17(4):205–8. https://doi.org/10.11256/jjdi.17.205.

Article  Google Scholar 

EMA designated medical event list. https://www.ema.europa.eu/documents/other/designated-medical-event-dme-list_en.xlsx

Evans SJW, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483–6. https://doi.org/10.1002/pds.677.

Article  CAS  PubMed  Google Scholar 

Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol Drug Saf. 2004;13(8):519–23. https://doi.org/10.1002/pds.1001.

Article  PubMed  Google Scholar 

Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. E J Clin Pharmacol. 1998;54(4):315–21. https://doi.org/10.1007/s002280050466.

Article  CAS  Google Scholar 

Dumouchel W. Bayesian Data Mining in Large Frequency Tables, with an Application to the FDA Spontaneous Reporting System. Am Stat. 1999;53(3):177–90. https://doi.org/10.1080/00031305.1999.10474456.

Article  Google Scholar 

Lehman HP, Chen J, Gould AL, et al. An Evaluation of Computer-Aided Disproportionality Analysis for Post-Marketing Signal Detection. Clin Pharmacol Ther. 2007;82(2):173–80. https://doi.org/10.1038/sj.clpt.6100233.

Article  CAS  PubMed  Google Scholar 

Harpaz R, DuMouchel W, LePendu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of Pharmacovigilance Signal-Detection Algorithms for the FDA Adverse Event Reporting System. Clin Pharmacol Ther. 2013;93(6):539–46. https://doi.org/10.1038/clpt.2013.24.

Article  CAS  PubMed  Google Scholar 

Medical and healthcare database utilization committee. Japanese Society for Pharmacoepidemiology. Survey of Japanese databases in Japan available for clinical/pharmacoepidemiology. http://www.jspe.jp/committee/020/0210/

Wisniewski AFZ, Bate A, Bousquet C, et al. Good Signal Detection Practices: Evidence from IMI PROTECT. Drug Saf. 2016;39(6):469–90. https://doi.org/10.1007/s40264-016-0405-1.

Article  PubMed  PubMed Central  Google Scholar 

Candore G, Juhlin K, Manlik K, et al. Comparison of Statistical Signal Detection Methods Within and Across Spontaneous Reporting Databases. Drug Saf. 2015;38(6):577–87. https://doi.org/10.1007/s40264-015-0289-5.

Article  CAS  PubMed  Google Scholar 

Ji X, Cui G, Xu C, Hou J, Zhang Y, Ren Y. Combining a Pharmacological Network Model with a Bayesian Signal Detection Algorithm to Improve the Detection of Adverse Drug Events. Front Pharmacol. 2022;12:3737. https://doi.org/10.3389/FPHAR.2021.773135/BIBTEX.

Article  Google Scholar 

Pham M, Cheng F, Ramachandran K. A Comparison Study of Algorithms to Detect Drug–Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches. Drug Saf. 2019;42(6):743–50. https://doi.org/10.1007/s40264-018-00792-0.

Article  PubMed  Google Scholar 

Kontsioti E, Maskell S, Pirmohamed M. Exploring the impact of design criteria for reference sets on performance evaluation of signal detection algorithms: The case of drug–drug interactions. Pharmacoepidemiology Drug. 2023;32(8):832–44. https://doi.org/10.1002/pds.5609.

Article  CAS  Google Scholar 

Ghosh P, Dewanji A. Effect of reporting bias in the analysis of spontaneous reporting data. Pharm Stat. 2015;14(1):20–5. https://doi.org/10.1002/pst.1657.

Article  PubMed  Google Scholar 

Hazell L, Shakir SAW. Under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2006;29(5):385–96. https://doi.org/10.2165/00002018-200629050-00003.

Article  PubMed  Google Scholar 

Alatawi YM, Hansen RA. Empirical estimation of under-reporting in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). Exp Opin Drug Saf. 2017;16(7):761–7. https://doi.org/10.1080/14740338.2017.1323867.

Article  Google Scholar 

Hasford J, Goettler M, Munter KH, Müller-Oerlinghausen B. Physicians’ knowledge and attitudes regarding the spontaneous reporting system for adverse drug reactions. J Clin Epidemiol. 2002;55(9):945–50. https://doi.org/10.1016/S0895-4356(02)00450-X.

Article  CAS  PubMed  Google Scholar 

Lopez-Gonzalez E, Herdeiro MT, Figueiras A. Determinants of under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2009;32(1):19–31. https://doi.org/10.2165/00002018-200932010-00002.

Article  CAS  PubMed  Google Scholar 

Ito S, Narukawa M. Estimation of the Under-Reporting of Suspected Serious Adverse Drug Reactions in Japan Using An Interrupted Time Series Analysis. Ther Innov Regul Sci. 2022;56(2):358–65. https://doi.org/10.1007/s43441-022-00379-z.

Article  PubMed  Google Scholar 

Tsuchiya M, Obara T, Sakai T, Nomura K, Takamura C, Mano N. Quality evaluation of the Japanese Adverse Drug Event Report database (JADER). Pharmacoepidemiol Drug Saf. 2020;29(2):173–81. https://doi.org/10.1002/pds.4944.

Article  PubMed  Google Scholar 

Tsuchiya M, Obara T, Miyazaki M, Noda A, Takamura C, Mano N. The quality assessment of the Japanese Adverse Drug Event Report database using vigiGrade. Int J Clin Pharm. 2020;42(2):728–36. https://doi.org/10.1007/s11096-020-00969-7.

Article  PubMed 

留言 (0)

沒有登入
gif