CIOMS Working Group VIII. Practical Aspects of Signal Detection in Pharmacovigilance. CIOMS; 2010.
Lavertu A, Vora B, Giacomini KM, Altman R, Rensi S. A New Era in Pharmacovigilance: Toward Real-World Data and Digital Monitoring. Clin Pharmacol Ther. 2021;109(5):1197–202. https://doi.org/10.1002/cpt.2172.
Article PubMed PubMed Central Google Scholar
Bate A, Evans SJW. Quantitative signal detection using spontaneous ADR reporting: QUANTITATIVE SIGNAL DETECTION. Pharmacoepidem Drug Safe. 2009;18(6):427–36. https://doi.org/10.1002/pds.1742.
European Medicines Agency (EMA). Guideline on Good Pharmacovigilance Practices (GVP) Module IX—Signal Management (Rev 1). Accessed October 10. 2024. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-ix-signal-management-rev-1_en.pdf
Food and Drug Administration (FDA). Guidance for Industry Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment. Accessed October 10. 2024. https://www.fda.gov/media/71546/download
Coloma PM, Avillach P, Salvo F, et al. A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 2012;36(1):13–23. https://doi.org/10.1007/s40264-012-0002-x.
Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a Reference Set to Support Methodological Research in Drug Safety. Drug Saf. 2013;36(S1):33–47. https://doi.org/10.1007/s40264-013-0097-8.
Harpaz R, Odgers D, Gaskin G, et al. A time-indexed reference standard of adverse drug reactions. Sci Data. 2014;1(1):140043. https://doi.org/10.1038/sdata.2014.43.
Article PubMed PubMed Central Google Scholar
Osokogu OU, Fregonese F, Ferrajolo C, et al. Pediatric Drug Safety Signal Detection: A New Drug–Event Reference Set for Performance Testing of Data-Mining Methods and Systems. Drug Saf. 2015;38(2):207–17. https://doi.org/10.1007/s40264-015-0265-0.
Article CAS PubMed PubMed Central Google Scholar
Kontsioti E, Maskell S, Dutta B, Pirmohamed M. A reference set of clinically relevant adverse drug-drug interactions. Sci Data. 2022;9(1):72. https://doi.org/10.1038/s41597-022-01159-y.
Article PubMed PubMed Central Google Scholar
Pharmaceuticals and Medical Devices Agency. Information on case reports with suspected side effects. https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0005.html
Nomura K, Takahashi K, Hinomura Y, et al. Effect of database profile variation on drug safety assessment: an analysis of spontaneous adverse event reports of Japanese cases. Drug Des Devel Ther. 2015;9:3031–41. https://doi.org/10.2147/DDDT.S81998.
Article CAS PubMed PubMed Central Google Scholar
Hosomi K, Arai M, Fujimoto M, Takada M. Applied Data Mining of the FDA Adverse Event Reporting System, FAERS, and the Japanese Adverse Drug Event Report Database, JADER: Signal Detection of Adverse Events by New Quinolones. Japanese J Drug Inf. 2015;17(1):15–20. https://doi.org/10.11256/jjdi.17.15
Pharmaceuticals and Medical Devices Agency. Risk Management Plan (RMP). https://www.pmda.go.jp/english/safety/info-services/drugs/rmp/0001.html
ICH Harmonised Tripartite Guideline Development Safety Update Report E2F. 2010. https://database.ich.org/sites/default/files/E2F_Guideline.pdf
Sato H, Ohira E, Murakami T, et al. Comparison between Risks Listed in the Risk Management Plan and the Product Labeling of the Drug Package Insert. Japanese J Drug Inf. 2015;17(4):205–8. https://doi.org/10.11256/jjdi.17.205.
EMA designated medical event list. https://www.ema.europa.eu/documents/other/designated-medical-event-dme-list_en.xlsx
Evans SJW, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483–6. https://doi.org/10.1002/pds.677.
Article CAS PubMed Google Scholar
Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol Drug Saf. 2004;13(8):519–23. https://doi.org/10.1002/pds.1001.
Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. E J Clin Pharmacol. 1998;54(4):315–21. https://doi.org/10.1007/s002280050466.
Dumouchel W. Bayesian Data Mining in Large Frequency Tables, with an Application to the FDA Spontaneous Reporting System. Am Stat. 1999;53(3):177–90. https://doi.org/10.1080/00031305.1999.10474456.
Lehman HP, Chen J, Gould AL, et al. An Evaluation of Computer-Aided Disproportionality Analysis for Post-Marketing Signal Detection. Clin Pharmacol Ther. 2007;82(2):173–80. https://doi.org/10.1038/sj.clpt.6100233.
Article CAS PubMed Google Scholar
Harpaz R, DuMouchel W, LePendu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of Pharmacovigilance Signal-Detection Algorithms for the FDA Adverse Event Reporting System. Clin Pharmacol Ther. 2013;93(6):539–46. https://doi.org/10.1038/clpt.2013.24.
Article CAS PubMed Google Scholar
Medical and healthcare database utilization committee. Japanese Society for Pharmacoepidemiology. Survey of Japanese databases in Japan available for clinical/pharmacoepidemiology. http://www.jspe.jp/committee/020/0210/
Wisniewski AFZ, Bate A, Bousquet C, et al. Good Signal Detection Practices: Evidence from IMI PROTECT. Drug Saf. 2016;39(6):469–90. https://doi.org/10.1007/s40264-016-0405-1.
Article PubMed PubMed Central Google Scholar
Candore G, Juhlin K, Manlik K, et al. Comparison of Statistical Signal Detection Methods Within and Across Spontaneous Reporting Databases. Drug Saf. 2015;38(6):577–87. https://doi.org/10.1007/s40264-015-0289-5.
Article CAS PubMed Google Scholar
Ji X, Cui G, Xu C, Hou J, Zhang Y, Ren Y. Combining a Pharmacological Network Model with a Bayesian Signal Detection Algorithm to Improve the Detection of Adverse Drug Events. Front Pharmacol. 2022;12:3737. https://doi.org/10.3389/FPHAR.2021.773135/BIBTEX.
Pham M, Cheng F, Ramachandran K. A Comparison Study of Algorithms to Detect Drug–Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches. Drug Saf. 2019;42(6):743–50. https://doi.org/10.1007/s40264-018-00792-0.
Kontsioti E, Maskell S, Pirmohamed M. Exploring the impact of design criteria for reference sets on performance evaluation of signal detection algorithms: The case of drug–drug interactions. Pharmacoepidemiology Drug. 2023;32(8):832–44. https://doi.org/10.1002/pds.5609.
Ghosh P, Dewanji A. Effect of reporting bias in the analysis of spontaneous reporting data. Pharm Stat. 2015;14(1):20–5. https://doi.org/10.1002/pst.1657.
Hazell L, Shakir SAW. Under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2006;29(5):385–96. https://doi.org/10.2165/00002018-200629050-00003.
Alatawi YM, Hansen RA. Empirical estimation of under-reporting in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). Exp Opin Drug Saf. 2017;16(7):761–7. https://doi.org/10.1080/14740338.2017.1323867.
Hasford J, Goettler M, Munter KH, Müller-Oerlinghausen B. Physicians’ knowledge and attitudes regarding the spontaneous reporting system for adverse drug reactions. J Clin Epidemiol. 2002;55(9):945–50. https://doi.org/10.1016/S0895-4356(02)00450-X.
Article CAS PubMed Google Scholar
Lopez-Gonzalez E, Herdeiro MT, Figueiras A. Determinants of under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2009;32(1):19–31. https://doi.org/10.2165/00002018-200932010-00002.
Article CAS PubMed Google Scholar
Ito S, Narukawa M. Estimation of the Under-Reporting of Suspected Serious Adverse Drug Reactions in Japan Using An Interrupted Time Series Analysis. Ther Innov Regul Sci. 2022;56(2):358–65. https://doi.org/10.1007/s43441-022-00379-z.
Tsuchiya M, Obara T, Sakai T, Nomura K, Takamura C, Mano N. Quality evaluation of the Japanese Adverse Drug Event Report database (JADER). Pharmacoepidemiol Drug Saf. 2020;29(2):173–81. https://doi.org/10.1002/pds.4944.
Tsuchiya M, Obara T, Miyazaki M, Noda A, Takamura C, Mano N. The quality assessment of the Japanese Adverse Drug Event Report database using vigiGrade. Int J Clin Pharm. 2020;42(2):728–36. https://doi.org/10.1007/s11096-020-00969-7.
留言 (0)