Mixture Disease Progression Model to Predict and Cluster the Long-Term Trajectory of Cognitive Decline in Alzheimer’s Disease

2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598–695

Andrieu S, Coley N, Lovestone S, et al. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol. 2015;14:926–44.

Article  PubMed  Google Scholar 

Cummings J, Zhou Y, Lee G, et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 2023;9:e12385.

Google Scholar 

Ballard C, Atri A, Boneva N, et al. Enrichment factors for clinical trials in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2019;5:164–74.

Google Scholar 

Blasko I, Kemmler G, Jungwirth S, et al. Plasma amyloid beta-42 independently predicts both late-onset depression and Alzheimer disease. Am J Geriatr Psychiatry. 2010;18:973–82.

Article  PubMed  Google Scholar 

Chu L-W, Tam S, Wong RLC, et al. Bioavailable testosterone predicts a lower risk of Alzheimer’s disease in older men. J Alzheimers Dis. 2010;21:1335–45.

Article  CAS  PubMed  Google Scholar 

Reitz C, Tang M-X, Schupf N, et al. A summary risk score for the prediction of Alzheimer disease in elderly persons. Arch Neurol. 2010;67:835–41.

Article  PubMed  PubMed Central  Google Scholar 

Verdelho A, Madureira S, Moleiro C, et al. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology. 2010;75:160–7.

Article  CAS  PubMed  Google Scholar 

Shah RC, Buchman AS, Wilson RS, et al. Hemoglobin level in older persons and incident Alzheimer disease: prospective cohort analysis. Neurology. 2011;77:219–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song X, Mitnitski A, Rockwood K. Nontraditional risk factors combine to predict Alzheimer disease and dementia. Neurology. 2011;77:227–34.

Article  PubMed  PubMed Central  Google Scholar 

Yang Y-H, Roe CM, Morris JC. Relationship between late-life hypertension, blood pressure, and Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2011;26:457–62.

Article  PubMed  PubMed Central  Google Scholar 

Wattmo C, Wallin ÅK. Early- versus late-onset Alzheimer’s disease in clinical practice: cognitive and global outcomes over 3 years. Alzheimers Res Ther. 2017;9:1–13.

Article  Google Scholar 

Zhou R, Deng J, Zhang M, et al. Association between bone mineral density and the risk of Alzheimer’s disease. J Alzheimers Dis. 2011;24:101–8.

Article  PubMed  Google Scholar 

Kim J, Woo S-Y, Kim S, et al. Differential effects of risk factors on the cognitive trajectory of early- and late-onset Alzheimer’s disease. Alzheimers Res Ther. 2021;13:1–10.

Article  Google Scholar 

Donohue MC, Jacqmin-Gadda H, Le Goff M, et al. Estimating long-term multivariate progression from short-term data. Alzheimers Dement. 2014;10:S400–10.

Article  PubMed  Google Scholar 

Li D, Iddi S, Thompson WK, et al. Bayesian latent time joint mixed effect models for multicohort longitudinal data. Stat Methods Med Res. 2019;28:835–45.

Article  PubMed  Google Scholar 

Raket LL. Statistical disease progression modeling in Alzheimer disease. Front Big Data. 2020;3:24.

Article  PubMed  PubMed Central  Google Scholar 

Kühnel L, Berger A-K, Markussen B, et al. Simultaneous modeling of Alzheimer’s disease progression via multiple cognitive scales. Stat Med. 2021;40:3251–66.

Article  PubMed  Google Scholar 

Balsis S, Benge JF, Lowe DA, et al. How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond? Clin Neuropsychol. 2015;29:1002–9.

Article  PubMed  Google Scholar 

Lansdall CJ, McDougall F, Butler LM, et al. Establishing clinically meaningful change on outcome assessments frequently used in trials of mild cognitive impairment due to Alzheimer’s disease. J Prev Alzheimers Dis. 2023;10:9–18.

CAS  PubMed  Google Scholar 

ADNI 2 Clinical Protocols [Internet]. Alzheimer’s Disease Neuroimaging Initiative: ADNI. https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/clinical/ADNI-2_Protocol.pdf. Accessed 29 February 2024

Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki K, Hirakawa A, Ihara R, et al. Effect of apolipoprotein E ε4 allele on the progression of cognitive decline in the early stage of Alzheimer’s disease. Alzheimers Dement. 2020;6:e12007.

Google Scholar 

Blennow K, Shaw LM, Stomrud E, et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1–42), pTau and tTau CSF immunoassays. Sci Rep. 2019;9:19024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gelman A, Carlin JB, Stern HS, et al. Bayesian data analysis. 3rd ed. Chapman and Hall/CRC; 2013.

Lewis F, Schaffer SK, Sussex J et al. The trajectory of dementia in the UK – Making a difference. OHE Contract Research. 2014. https://www.ohe.org/publications/trajectory-dementia-uk-making-difference/. Accessed 22 May 2024.

Rasmussen J, Langerman H. Alzheimer’s disease - why we need early diagnosis. Degener Neurol Neuromuscul Dis. 2019;9:123–30.

PubMed  PubMed Central  Google Scholar 

Diniz BSO, Pinto JA, Forlenza OV. Do CSF total tau, phosphorylated tau, and β-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer’s disease? A systematic review and meta-analysis of the literature. World J Biol Psychiatry. 2008;9:172–82.

Article  PubMed  Google Scholar 

Mitchell AJ. CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 51 studies. J Neurol Neurosurg Psychiatry. 2009;80:966–75.

Article  CAS  PubMed  Google Scholar 

Snider BJ, Fagan AM, Roe C, et al. Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Arch Neurol. 2009;66:638–45.

Article  PubMed  PubMed Central  Google Scholar 

Posner H, Curiel R, Edgar C, et al. Outcomes assessment in clinical trials of Alzheimer’s disease and its precursors: readying for short-term and long-term clinical trial needs. Innov Clin Neurosci. 2017;14:22–9.

PubMed  PubMed Central  Google Scholar 

Cohen S, Cummings J, Knox S, et al. Clinical trial endpoints and their clinical meaningfulness in early stages of Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9:507–22.

CAS  PubMed  PubMed Central  Google Scholar 

Poulakis K, Pereira JB, Muehlboeck J-S, et al. Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease. Nat Commun. 2022;13:4566.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Ye T, Zhou W, et al. Uncovering heterogeneous cognitive trajectories in mild cognitive impairment: a data-driven approach. Alzheimers Res Ther. 2023;15:57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang Q, Andersen SL, Sweigart B, et al. Signatures of neuropsychological test results in the long life family study: a cluster analysis. J Alzheimers Dis. 2023;93:1457–69.

Article  PubMed  PubMed Central  Google Scholar 

Petersen RC, Thomas RG, Aisen PS, et al. Randomized controlled trials in mild cognitive impairment: sources of variability. Neurology. 2017;88:1751–8.

Article  PubMed  PubMed Central  Google Scholar 

Lam B, Masellis M, Freedman M, et al. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013;5:1.

Article  PubMed  PubMed Central  Google Scholar 

Crane PK, Trittschuh E, Mukherjee S, et al. Incidence of cognitively defined late-onset Alzheimer’s dementia subgroups from a prospective cohort study. Alzheimers Dement. 2017;13:1307–16.

Article 

留言 (0)

沒有登入
gif