Evans SR. Independent Oversight of Clinical Trials through Data and Safety Monitoring Boards. NEJM Evid. 2022;1:EVIDctw2100005. https://doi.org/10.1056/EVIDctw2100005
Ellenberg SS, Fleming TR, DeMets DL. Responsibilities of the Data Monitoring Committee and Motivating Illustrations. Data Monitoring Committees in Clinical Trials. 2nd ed. Hoboken, NJ: John Wiley & Son Ltd; 2019. pp. 35–88.
Evans SR, Ting N. Fundamental concepts for New Clinical trialists. Boca Raton, FL: Chapman and Hall/CRC; 2016.
Herson J. Data and Safety Monitoring Committees in clinical trials. 2nd ed. New York: Chapman and Hall/CRC; 2016.
Wittes J. Behind closed doors: the data monitoring board in randomized clinical trials. Stat Med. 1993;12:419–24. https://doi.org/10.1002/sim.4780120504
Calis KA, Archdeacon P, Bain R, DeMets D, Donohue M, Elzarrad MK, et al. Recommendations for data monitoring committees from the Clinical Trials Transformation Initiative. Clin Trials. 2017;14(4):342–8. https://doi.org/10.1177/1740774517707743
Article PubMed PubMed Central Google Scholar
Buhr KA, Downs M, Rhorer J, Bechhofer R, Wittes J. Reports to independent data monitoringcommittees: an appeal for clarity, completeness, and comprehensibility. Ther Innov Regul Sci. 2018;52(4):459–68. https://doi.org/10.1177/2168479017739268
Rosenberg S. Cool hand Luke. Warner Bros.: Deluxe edition. Burbank, CA: Warner Bros. Pictures: distributed by Warner Home Video. [2008] ©2008; 1967.
Ellenberg SS, Fleming TR, DeMets DL. Data Monitoring Committee Meetings. Data Monit Committees Clin Trials. 2nd ed. Hoboken, NJ: John Wiley & Son Ltd; 2019. 203–36.
Neaton JD, Grund B, Wentworth D. How to construct an optimal interim report: what the data monitoring committee does and doesn’t need to know. Clin Trials. 2018;15:359–65. https://doi.org/10.1177/1740774518764449
Ellenberg SS, Fleming TR, DeMets DL. Composition of a Data Monitoring Committee. Data Monitoring Committees in Clinical Trials. 2nd ed. Hoboken, NJ: John Wiley & Son Ltd; 2019. pp. 89–112.
Baksh S, Zeng L. Data and safety monitoring and reporting. In: Piantadosi S, Meinert CL, editors. Principles and practice of clinical trials. Cham: Springer International Publishing; 2020. pp. 1–20.
Wittes J. The Independent Statistical Reporting Group: Guiding Principles and Best Practices. https://si.biostat.washington.edu/sites/default/files/modules/SISCER%20Wittes%20DMC%20reports%207-28-2020.pptx (2020). Accessed April 12 2024.
DeMets DL, Wittes J. Data monitoring committee interim reports: we must get there soon! Clin Trials. 2022;19:107–11. https://doi.org/10.1177/17407745211051279
Evans SR, Bigelow R, Chuang-Stein C, Ellenberg SS, Gallo P, He W, et al. Presenting Risks and Benefits: Helping the Data Monitoring Committee Do Its Job. Ann Intern Med. 2020;172:119–25. https://doi.org/10.7326/m19-1491
Fleming TR, DeMets DL, Roe MT, Wittes J, Calis KA, Vora AN, et al. Data monitoring committees: promoting best practices to address emerging challenges. Clin Trials. 2017;14:115–23. https://doi.org/10.1177/1740774516688915
Article PubMed PubMed Central Google Scholar
Yang F, Wittes J, Pitt B. Beware of on-treatment safety analyses. Clin Trials. 2019;16:63–70. https://doi.org/10.1177/1740774518812774
Fleming TR, Wittes J, Fiuzat M, Bristow MR, Rockhold FW, CJ T, et al. Training the Next Generation of Data Monitoring Committee Members. JACC: Heart Fail. 2024;12:1317-1327. https://doi.org/10.1016/j.jchf.2024.02.016
Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70:659–63. https://doi.org/10.2307/2336502
Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64:191–9.
O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549–56.
Mütze T, Friede T. Data monitoring committees for clinical trials evaluating treatments of COVID-19. Contemp Clin Trials. 2020;98:106154. https://doi.org/10.1016/j.cct.2020.106154.
Article PubMed PubMed Central Google Scholar
Hernán MA, Hernández-Díaz S, Robins JM. Randomized trials analyzed as observational studies. Ann Intern Med. 2013;159:560–2. https://doi.org/10.7326/0003-4819-159-8-201310150-00709
Rockhold F, Mahaffey K, DeMets D, Training New DMC, Members. A call to action. Therapeutic Innov Regul Sci. 2024;58:234–5. https://doi.org/10.1007/s43441-023-00580-8
UW-Madison SDAC. Sample Closed Session DMC Report. https://biostat.wiscweb.wisc.edu/wp-content/uploads/sites/1008/2019/05/Sample_Report_Closed_20160920.pdf (2016). Accessed April 12 2024.
Jiang Y. Using the ODS GRAPHICS® to Create Patients Enrollment Graphs. https://www.lexjansen.com/pharmasug-cn/2018/DV/Pharmasug-China-2018-DV34.pdf (2018). Accessed November 2 2022.
Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. https://doi.org/10.1136/bmj.c332.
Article PubMed PubMed Central Google Scholar
Hopewell S, Boutron I, Chan A-W, Collins GS, de Beyer JA, Hróbjartsson A, et al. An update to SPIRIT and CONSORT reporting guidelines to enhance transparency in randomized trials. Nat Med. 2022;28:1740–3. https://doi.org/10.1038/s41591-022-01989-8
Vandemeulebroecke M, Baillie M, Mirshani A, Lesaffre E. DMC reports in the 21st century: towards better tools for decision-making. Trials. 2023;24:289. https://doi.org/10.1186/s13063-023-07290-4
Article PubMed PubMed Central Google Scholar
Zink RC, Wolfinger RD, Mann G. Summarizing the incidence of adverse events using volcano plots and time intervals. Clin Trials. 2013;10:398–406. https://doi.org/10.1177/1740774513485311
Nelakurthi J, Sudini C. Volcano Plot: Demystifying Why and How. https://www.lexjansen.com/phuse-us/2020/dv/DV14.pdf (2020). Accessed November 2 2022.
Matange S. Most Frequent AE Sorted by Relative Risk. https://blogs.sas.com/content/graphicallyspeaking/2012/12/03/most-frequent-ae-sorted-by-relative-risk/ (2012). Accessed November 2 2022.
Karpefors M, Weatherall J. The Tendril Plot—a novel visual summary of the incidence, significance and temporal aspects of adverse events in clinical trials. J Am Med Inform Assoc. 2018;25:1069–73. https://doi.org/10.1093/jamia/ocy016
Article PubMed PubMed Central Google Scholar
Swihart BJ, Caffo B, James BD, Strand M, Schwartz BS, Punjabi NM. Lasagna plots: a saucy alternative to spaghetti plots. Epidemiology. 2010;21:621–5. https://doi.org/10.1097/EDE.0b013e3181e5b06a
Article PubMed PubMed Central Google Scholar
Konda S. A Sassy substitute to represent the longitudinal data– The Lasagna Plot. https://www.pharmasug.org/proceedings/2021/DV/PharmaSUG-2021-DV-200.pdf (2021). Accessed May 15 2024.
Gillespie TW. Understanding waterfall plots. J Adv Pract Oncol. 2012;3:106–11.
PubMed PubMed Central Google Scholar
Almond S. Fine-tuning your swimmer plot: another example from oncology. https://www.pharmasug.org/proceedings/2019/DV/PharmaSUG-2019-DV-323.pdf (2019). Accessed May 18 2024.
Phillips SD. Swimmer Plot: Tell a Graphical Story of Your Time to Response Data Using PROC SGPLOT. https://www.pharmasug.org/proceedings/2014/DG/PharmaSUG-2014-DG07.pdf (2014). Accessed November 2 2022.
Weiss J. Accessed May 15: Creating swimmer plots with ease. https://cran.r-project.org/web/packages/swimplot/vignettes/Introduction.to.swimplot.html 2024.
Li L, Evans SR, Uno H, Wei LJ. Predicted interval plots (PIPS): a graphical tool for data monitoring of clinical trials. Stat Biopharm Res. 2009;1:348–55. https://doi.org/10.1198/sbr.2009.0041
Article PubMed PubMed Central Google Scholar
Higgins P. Drawing a Consort Diagram in ggplot2. https://rpubs.com/phiggins/461686 (2019). Accessed November 2 2022.
Gerke T, Aden-Buie G. ggconsort. https://tgerke.github.io/ggconsort/ Accessed 15 May 2024.
Hebbar P, Matange S. CONSORT Diagrams with SG Procedures. https://www.pharmasug.org/proceedings/2018/DV/PharmaSUG-2018-DV24.pdf (2018). Accessed November 2 2022.
Anusha Mallavarapu, Shults D. CONSORT Diagram: Doing it with SAS. https://www.lexjansen.com/phuse/2016/pp/PP03.pdf (2016). Accessed November 2 2022.
Dayim A. Self-generating CONSORT diagram. https://cran.r-project.org/web/packages/consort/vignettes/consort_diagram.html (2024). Accessed June 5 2024.
Evans SR, Zeng L, Dai W. The Data and Safety Monitoring Board: the toughest job in clinical trials. NEJM Evid. 2023;2:EVIDctw2200220. https://doi.org/10.1056/EVIDctw2200220
Evans SR, Rubin D, Follmann D, Pennello G, Huskins WC, Powers JH, et al. Desirability of Outcome Ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR). Clin Infect Dis. 2015;61:800–6. https://doi.org/10.1093/cid/civ495
Article PubMed PubMed Central Google Scholar
Tsalik EL, Rouphael NG, Sadikot RT, Rodriguez-Barradas MC, McClain MT, Wilkins DM, et al. Efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections associated with low procalcitonin: a randomised, placebo-controlled, double-blind, non-inferiority trial. Lancet Infect Dis. 2023;23:484–95 https://www.sciencedirect.com/science/article/pii/S1473309922007356
Wang W, Revis R, Nilsson M, Crowe B. Clinical Trial Drug Safety Assessment with interactive visual analytics. Stat Biopharm Res. 2021;13:355–66. https://doi.org/10.1080/19466315.2020.1736142
Wildfire J, Bailey R, Krouse RZ, Childress S, Sikora B, Bryant N, et al. The safety explorer suite:interactive safety monitoring for clinical trials. Therapeutic Innov Regul Sci. 2018;52:696–700. https://doi.org/10.1177/2168479018754846
留言 (0)