Kuyucak N, Akcil A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng. 2013;50–51:13–29. https://doi.org/10.1016/j.mineng.2013.05.027.
Welman-Purchase MD, Castillo J, Gomez-Arias A, Matu A, Hansen RN. First insight into the natural biodegradation of cyanide in a gold tailings environment enriched in cyanide compounds. Sci Total Environ. 2024;906:167174. https://doi.org/10.1016/j.scitotenv.2023.167174.
Article CAS PubMed Google Scholar
Welman-Purchase MD, Hansen RN. Cyanide within gold mine waste of the free state goldfields: a geochemical modelling approach. Environ Pollut. 2023;318:120825. https://doi.org/10.1016/j.envpol.2022.120825.
Article CAS PubMed Google Scholar
Roldán MD, Olaya-Abril A, Sáez LP, Cabello P, Luque-Almagro VM, Moreno-Vivián C. Bioremediation of cyanide-containing wastes. The potential of systems and synthetic biology for cleaning up the toxic leftovers from mining. EMBO Rep. 2021;22:53720. https://doi.org/10.15252/embr.202153720.
Fisher FB, Brown JS. Colorimetric determination of cyanide in stack gas and waste water. Anal Chem. 1952;24:1440–4. https://doi.org/10.1021/ac60069a014.
Basile LJ, Willson RC, Sewell BT, Benedik MJ. Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol. 2008;80:427–35. https://doi.org/10.1007/s00253-008-1559-2.
Article CAS PubMed Google Scholar
Appenteng MK, Krueger R, Johnson MC, Ingold H, Bell R, Thomas AL, Greenlief CM. Cyanogenic glycoside analysis in American elderberry. Molecules. 2021;26:1384. https://doi.org/10.3390/molecules26051384.
Article CAS PubMed PubMed Central Google Scholar
Cyanide Test. Description. https://www.sigmaaldrich.com/CZ/en/product/mm/109701. Accessed 19 June 2024.
Byun Y, Rahman S, Hwang S, Park J, Go S, Kim J. Highly sensitive and straightforward methods for the detection of cyanide using profluorescent glutathionylcobalamin. Spectrochim Acta A. 2019;221:117151. https://doi.org/10.1016/j.saa.2019.117151.
Girgin A, Akbiyik H, Zaman BT, Cetin G, Bakirdere S. Colorimetric sensor based AgNPs for the detection of cyanide using UV-Vis spectrophotometry. ChemistrySelect. 2023;8:202301663. https://doi.org/10.1002/slct.202301663.
Li YR, Wang QR, Zhou XM, Wen CY, Yu JF, Han XG, Li XY, Yan ZF, Zeng JB. A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@Au core-shell nanoparticles. Sensor Actuat B-Chem. 2016;228:366–72. https://doi.org/10.1016/j.snb.2016.01.022.
Christison TT, Rohrer JS. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J Chromatogr A. 2007;1155:31–9. https://doi.org/10.1016/j.chroma.2007.02.083.
Article CAS PubMed Google Scholar
Shin MC, Kwon YS, Kim JH, Hwang K, Seo JS. Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS). Anal Sci Technol. 2019;32:88–95. https://doi.org/10.5806/ast.2019.32.3.88.
Gattrell M, Cheng SC, Guena T, Macdougall B. Cyanide ion-selective electrode measurements in the presence of copper. J Electroanal Chem. 2001;508:97–104. https://doi.org/10.1016/s0022-0728(01)00513-7.
Turek M, Heiden W, Guo SR, Riesen A, Schubert J, Zander W, Krüger P, Keusgen M, Schöning MJ. Simultaneous detection of cyanide and heavy metals for environmental analysis by means of μISEs. Phys Status Solidi A. 2010;207:817–23. https://doi.org/10.1002/pssa.200983303.
Mak KKW, Yanase H, Renneberg R. Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors. Biosens Bioelectron. 2005;20:2581–93. https://doi.org/10.1016/j.bios.2004.09.015.
Article CAS PubMed Google Scholar
Keusgen M, Kloock JP, Knobbe DT, Junger M, Krest I, Goldbach M, Klein W, Schöning MJ. Direct determination of cyanides by potentiometric biosensors. Sensor Actuat B-Chem. 2004;103:380–5. https://doi.org/10.1016/j.snb.2004.04.067.
Turek M, Ketterer L, Classen M, Berndt HK, Elbers G, Krüger P, et al. Development and electrochemical investigations of an EIS-(electrolyte-insulator-semiconductor) based biosensor for cyanide detection. Sensors. 2007;7:1415–26. https://doi.org/10.3390/s7081415.
Article CAS PubMed Central Google Scholar
Ketterer L, Keusgen M. Amperometric sensor for cyanide utilizing cyanidase and formate dehydrogenase. Anal Chim Acta. 2010;673:54–9. https://doi.org/10.1016/j.aca.2010.04.058.
Article CAS PubMed Google Scholar
L-Lactic acid (L-Lactate) Assay Kit. Neogen | Megazyme. https://www.megazyme.com/l-lactic-acid-assay-kit. Accessed 19 June 2024.
Formic Acid Assay Kit. Neogen | Megazyme. https://www.megazyme.com/formic-acid-assay-kit. Accessed 19 June 2024.
Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta. 1997;44:1299–305. https://doi.org/10.1016/s0039-9140(97)00017-9.
Article CAS PubMed Google Scholar
Chamchoy K, Pakotiprapha D, Pumirat P, Leartsakulpanich U, Boonyuen U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem. 2019;20:4. https://doi.org/10.1186/s12858-019-0108-1.
Article CAS PubMed PubMed Central Google Scholar
Martínková L, Kulik N, Rucká L, Kotik M, Křístková B, Šťastná K, Novotný P, Příhodová R, Bojarová P, Pátek M. Biotransformation of free cyanide to formic acid by a cyanide hydratase−formamidase cascade reaction. Proc Biochem. 2024;142:62–7. https://doi.org/10.1016/j.procbio.2024.04.009.
Crum MA, Park JM, Sewell BT, Benedik MJ. C-terminal hybrid mutant of Bacillus pumilus cyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization. J Appl Microbiol. 2015;118:881–9. https://doi.org/10.1111/jam.12754.
Article CAS PubMed Google Scholar
Sedova A, Rucká L, Bojarová P, Glozlová M, Novotný P, Křístková B, Pátek M, Martínková L. Application potential of cyanide hydratase from Exidia glandulosa: free cyanide removal from simulated industrial effluents. Catalysts. 2021;11:1410. https://doi.org/10.3390/catal11111410.
Separation Science, Chromatographic Measurements, Part 5: Dolan J. Determining LOD and LOQ Based on the Calibration Curve. Feb 9, 2021. https://www.sepscience.com/hplc-solutions-126-chromatographic-measurements-part-5-determining-lod-and-loq-based-on-the-calibration-curve/. Accessed 20 June 2024.
Soriano-Maldonado P, Martínez-Gómez AI, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Martínez-Rodríguez S. Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microbiol. 2011;77:5761–9. https://doi.org/10.1128/aem.00312-11.
Article CAS PubMed PubMed Central Google Scholar
Formate dehydrogenase (Candida boidinii). https://www.megazyme.com/formate-dehydrogenase-candida-boidinii. Accessed 22 August 2024.
Know your H2O? Get informed − what is cyanide? Water Research Center. https://www.knowyourh2o.com/indoor-6/cyanide#:~:text=. Accessed 30 May 2024.
Papadimitriou CA, Samaras P, Sakellaropoulos GP. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors. Bioresour Technol. 2009;100:31–7. https://doi.org/10.1016/j.biortech.2008.06.004.
Article CAS PubMed Google Scholar
Jarrah N, Mu’azu ND. Simultaneous electro-oxidation of phenol, CN-, S2- and NH4+ in synthetic wastewater using boron doped diamond anode. J Environ Chem Eng. 2016;4:2656–64. https://doi.org/10.1016/j.jece.2016.04.011.
留言 (0)