Development, optimization and comparison of solid–liquid and liquid–liquid microextraction for the determination of four flavonols in Schinus molle L. using high-performance liquid chromatography coupled with second-order data modeling

Doshi GM, Une HD. Quantification of quercetin and rutin from Benincasa hispida seeds and Carissa Congesta roots by high-performance thin layer chromatography and high-performance liquid chromatography. Pharmacognosy Res. 2016;8(1):37–42. https://doi.org/10.4103/0974-8490.171098.

Article  PubMed  PubMed Central  Google Scholar 

Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J. 2017;25(2):149–64. https://doi.org/10.1016/j.jsps.2016.04.025.

Article  PubMed  Google Scholar 

Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305–12. https://doi.org/10.1016/j.biopha.2017.10.001.

Article  PubMed  Google Scholar 

Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin : therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs. 2013;22(8):1063–79. https://doi.org/10.1517/13543784.2013.805744.

Article  PubMed  Google Scholar 

Rauf A, Imran M, Patel S, Muzaffar R, Bawazeer SS. Rutin: exploitation of the flavonol for health and homeostasis. Biomed Pharmacother. 2017;96:1559–61. https://doi.org/10.1016/j.biopha.2017.08.136.

Article  PubMed  Google Scholar 

Siti HN, Jalil J, Asmadi AY, Kamisah Y. Roles of rutin in cardiac remodeling. J Funct Foods. 2020;64: 103606. https://doi.org/10.1016/j.jff.2019.103606.

Article  Google Scholar 

Babujanarthanam R, Kavitha P, Pandian MR. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundam Clin Pharmacol. 2010;24(3):357–64. https://doi.org/10.1111/j.1472-8206.2009.00771.x.

Article  PubMed  Google Scholar 

Li W, Li H, Zhang M, Wang M, Zhong Y, Wu H, Yang Y, Morel L, Wei Q. Quercitrin ameliorates the development of systemic lupus erythematosus-like disease in a chronic graft-versus-host murine model. Am J Physiol Renal Physiol. 2016;311(1):F217-226. https://doi.org/10.1152/ajprenal.00249.2015.

Article  PubMed  Google Scholar 

Cincin ZB, Unlu M, Kiran B, Bireller ES, Baran Y, Cakmakoglu B. Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014;45(6):445–54. https://doi.org/10.1016/j.arcmed.2014.08.002.

Article  PubMed  Google Scholar 

Lin HH, Huang CY. Characterization of flavonol inhibition of DnaB helicase: real-time monitoring, structural modeling, and proposed mechanism. J Biomed Biotechnol. 2012;2012: 735368. https://doi.org/10.1155/2012/735368.

Article  PubMed  PubMed Central  Google Scholar 

Bailey EZ, Bailey LH, New York State College of A, Life S (1976) Hortus third : a concise dictionary of plants cultivated in the United States and Canada. Rev. and expanded / by the staff of the Liberty Hyde Bailey Hortorium, a unit of the New York State College of Agriculture and Life Sciences, a statutory college of the State University at Cornell University edn. Macmillan, New York.

Belhamel K, Abderrahim A, Ludwig R. Chemical composition and antibacterial activity of the essential oil of Schinus molle L. grown in Algeria. Int. J. Essent. Oil Ther. 2008;2:175–177. https://doi.org/10.17660/ActaHortic.2009.826.27.

Díaz C, Quesada S, Brenes O, Aguilar G, Cicció JF. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines. Nat Prod Res. 2008;22(17):1521–34. https://doi.org/10.1080/14786410701848154.

Article  PubMed  Google Scholar 

Bendaoud H, Romdhane M, Souchard JP, Cazaux S, Bouajila J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J Food Sci. 2010;75(6):C466–472. https://doi.org/10.1111/j.1750-3841.2010.01711.x.

Aboalhaija NH, Awwad O, Khalil E, Abbassi R, Abaza IF, Afifi FU. Chemodiversity and antiproliferative activity of the essential oil of Schinus molle growing in Jordan. Chem Biodivers. 2019;16(11): e1900388. https://doi.org/10.1002/cbdv.201900388.

Article  PubMed  Google Scholar 

Ovidi E, Garzoli S, LaghezzaMasci V, Turchetti G, Tiezzi A. GC-MS investigation and antiproliferative activities of extracts from male and female flowers of Schinus molle L. Nat Prod Res. 2021;35(11):1923–7. https://doi.org/10.1080/14786419.2019.1644628.

Article  PubMed  Google Scholar 

Jahan K, Mahmood D, Fahim M. Effects of methanol in blood pressure and heart rate in the rat. J Pharm Bioallied Sci. 2015;7(1):60–4. https://doi.org/10.4103/0975-7406.148747.

Article  PubMed  PubMed Central  Google Scholar 

Yueqin Z, Recio MC, Máñez S, Giner RM, Cerdá-Nicolás M, Ríos JL. Isolation of two triterpenoids and a biflavanone with anti-Inflammatory activity from Schinus molle fruits. Planta Med. 2003;69(10):893–8. https://doi.org/10.1055/s-2003-45096.

Article  PubMed  Google Scholar 

Barrachina MD, Bello R, Martínez-Cuesta MA, Primo‐Yúfera E, Esplunges J. Analgesic and central depressor effects of the dichloromethanol extract from Schinus molle L. Phytotherapy Research. 1997;11.

Yang C, Wang J, Li D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta. 2013;799:8–22. https://doi.org/10.1016/j.aca.2013.07.069.

Article  PubMed  Google Scholar 

Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng. 2013;117(4):426–36. https://doi.org/10.1016/j.jfoodeng.2013.01.014.

Article  Google Scholar 

Carabajal M, Teglia CM, Cerutti S, Culzoni MJ, Goicoechea HC. Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization. Microchem J. 2020;152: 104436. https://doi.org/10.1016/j.microc.2019.104436.

Article  Google Scholar 

Kokosa JM, Przyjazny A. Green microextraction methodologies for sample preparations. Green Anal Chem. 2022;3: 100023. https://doi.org/10.1016/j.greeac.2022.100023.

Article  Google Scholar 

Višnjevec AM, Barp L, Lucci P, Moret S. Pressurized liquid extraction for the determination of bioactive compounds in plants with emphasis on phenolics. TrAC, Trends Anal Chem. 2024;173: 117620. https://doi.org/10.1016/j.trac.2024.117620.

Article  Google Scholar 

Azcarate SM, Teglia CM, Chiappini FA, Goicoechea HC (2023) Fundamentals of design of experiments and optimization: experimental designs in response surface methodology. introduction to quality by design in pharmaceutical manufacturing and analytical development. Springer. pp 47–66.

Vera Candioti L, De Zan MM, Cámara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014;124:123–138. https://doi.org/10.1016/j.talanta.2014.01.034.

Jan S, Ahmad J, Dar MM, Wani AA, Tahir I, Kamili AN. Development and validation of a reverse phase HPLC–DAD method for separation, detection & quantification of rutin and quercetin in buckwheat (Fagopyrum spp.). J Food Sci Technol. 2022; 59:2875–2883. https://doi.org/10.1007/s13197-021-05312-0.

Khuluk RH, Yunita A, Rohaeti E, Syafitri UD, Linda R, Lim LW, Takeuchi T, Rafi M. An HPLC-DAD method to quantify flavonoids in sonchus arvensis and able to classify the plant parts and their geographical area through principal component analysis. Separations. 2021;8:12–22. https://doi.org/10.3390/separations8020012.

Article  Google Scholar 

Kuppusamy P, Lee KD, Song CE, Ilavenil S, Srigopalram S, Arasu MV, Choi KC. Quantification of major phenolic and flavonoid markers in forage crop Lolium multiflorum using HPLC-DAD. Rev Bras Farmacogn. 2018;28:282–8. https://doi.org/10.1016/j.bjp.2018.03.006.

Article  Google Scholar 

T Tauler R. Multivariate curve resolution applied to second order data. Chemom Intell Lab Syst. 1995;30(1):133–146. https://doi.org/10.1016/0169-7439(95)00047-X.

Peng T-Q, Yin X-L, Gu H-W, Sun W, Ding B, Hu X-C, Ma L-A, Wei S-D, Liu Z, Ye S-Y. HPLC-DAD fingerprints combined with chemometric techniques for the authentication of plucking seasons of Laoshan green tea. Food Chem. 2021;347: 128959. https://doi.org/10.1016/j.foodchem.2020.128959.

Article  PubMed  Google Scholar 

Afonso S, Pisano PL, Silva FB, Scaminio IS, Olivieri AC. Discriminant analysis of Annona muricata and Rollinia mucosa extracts by multivariate curve resolution and partial least-squares regression of liquid chromatography-diode array data. J Braz Chem Soc. 2015;26:2241–8. https://doi.org/10.5935/0103-5053.20150210.

Article  Google Scholar 

MATLAB7.10 The MathWorks Inc. Natick, Massachussets, USA. (2010).

Giordano PC, Goicoechea HC, Olivieri AC. SRO_ANN: an integrated MatLab toolbox for multiple surface response optimization using radial basis functions. Chemom Intell Lab Syst. 2017;171:198–206. https://doi.org/10.1016/j.chemolab.2017.11.004.

Article  Google Scholar 

Windig W, Guilment J. Interactive self-modeling mixture analysis. Anal Chem. 1991;63(14):1425–32. https://doi.org/10.1021/ac00014a016.

Article  Google Scholar 

Olivieri AC. Practical guidelines for reporting results in single- and multi-component analytical calibration: a tutorial. Anal Chim Acta. 2015;868:10–22. https://doi.org/10.1016/j.aca.2015.01.017.

Article  PubMed  Google Scholar 

Zhu Y, Yin Q, Yang Y. Comprehensive investigation of moringa oleifera from different regions by simultaneous determination of 11 polyphenols using UPLC-ESI-MS/MS. Molecules. 2020;25(3). https://doi.org/10.3390/molecules25030676.

Dubber MJ, Kanfer I. High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J Pharm Pharm Sci. 2004;7:303–9.

PubMed  Google Scholar 

Liu J, Fu Y, Cui Q. Efficient, rapid and incremental extraction of bioactive compounds from the flower of Hibiscus manihot L. Beverage Plant Res. 2023;3. https://doi.org/10.48130/BPR-2023-0011.

Wahid M, Saqib F, Chicea L, Ahmedah HT, Sajer BH, Marc Vlaic RA, Pop OL, Moga M, Gavris C. Metabolomics analysis delineates the therapeutic effects of hydroethanolic extract of Cucumis sativus L. seeds on hypertension and isoproterenol-induced myocardial infarction. Biomed Pharmacother. 2022;148:112704. https://doi.org/10.1016/j.biopha.2022.112704.

Naveen P, Lingaraju HB, Anitha, Prasad KS. Simultaneous determination of rutin, isoquercetin, and quercetin flavonoids in Nelumbo nucifera by high-performance liquid chromatography method. Int J Pharm Investig. 2017;7(2):94–100. https://doi.org/10.4103/jphi.JPHI_33_17.

Nongalleima K, Ajungla T, Singh CB. Determination of antioxidant activity and simultaneous RP-HPLC analysis of quercetin, rutin and kaempferol in Citrus macroptera Montruz. J Pharmacogn Phytochem. 2017;6:474–8.

Google Scholar 

Kalinova J, Vrchotova N. Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. J Agric Food Chem. 2009;57(7):2719–25. https://doi.org/10.1021/jf803633f.

留言 (0)

沒有登入
gif