BDNF augmentation reverses cranial radiation therapy-induced cognitive decline and neurodegenerative consequences

Acharya MM, Baulch JE, Lusardi T, Allen BD, Chmielewski NN, Baddour AAD, Limoli CL, Boison D (2016) Adenosine Kinase inhibition protects against cranial radiation-induced cognitive dysfunction. Front Mol Neurosci 9:1–10. https://doi.org/10.3389/fnmol.2016.00042

Article  CAS  Google Scholar 

Acharya MM, Christie LA, Lan ML, Giedzinski E, Fike JR, Rosi S, Limoli CL (2011) Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res 71:4834–4845. https://doi.org/10.1158/0008-5472.CAN-11-0027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acharya MM, Christie LA, Lan ML, Limoli CL (2013) Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant 22:55–64. https://doi.org/10.3727/096368912X640565

Article  PubMed  Google Scholar 

Acharya MM, Green KN, Allen BD, Najafi AR, Syage A, Minasyan H, Le MT, Kawashita T, Giedzinski E, Parihar VK et al (2016) Elimination of microglia improves cognitive function following cranial irradiation. Sci Rep 6:31545. https://doi.org/10.1038/srep31545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acharya MM, Martirosian V, Chmielewski NN, Hanna N, Tran KK, Liao AC, Christie LA, Parihar VK, Limoli CL (2015) Stem cell transplantation reverses chemotherapy-induced cognitive dysfunction. Cancer Res 75:676–686. https://doi.org/10.1158/0008-5472.CAN-14-2237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acharya MM, Patel NH, Craver BM, Tran KK, Giedzinski E, Tseng BP, Parihar VK, Limoli CL (2015) Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment. PLoS ONE 10:e0128316. https://doi.org/10.1371/journal.pone.0128316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alaghband Y, Allen BD, Kramar EA, Zhang R, Drayson OGG, Ru N, Petit B, Almeida A, Doan NL, Wood MA et al (2023) Uncovering the protective neurologic mechanisms of hypofractionated FLASH radiotherapy. Cancer Res Commun 3:725–737. https://doi.org/10.1158/2767-9764.CRC-23-0117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen BD, Acharya MM, Lu C, Giedzinski E, Chmielewski NN, Quach D, Hefferan M, Johe KK, Limoli CL (2018) Remediation of radiation-induced cognitive dysfunction through oral administration of the neuroprotective compound NSI-189. Radiat Res 189:345–353. https://doi.org/10.1667/RR14879.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen BD, Apodaca LA, Syage AR, Markarian M, Baddour AAD, Minasyan H, Alikhani L, Lu C, West BL, Giedzinski E et al (2019) Attenuation of neuroinflammation reverses adriamycin-induced cognitive impairments. Acta Neuropathol Commun 7:186. https://doi.org/10.1186/s40478-019-0838-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barres BA, Raff MC (1999) Axonal control of oligodendrocyte development. J Cell Biol 147:1123–1128. https://doi.org/10.1083/jcb.147.6.1123

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11:1164–1178. https://doi.org/10.5114/aoms.2015.56342

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  Google Scholar 

Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430

Article  PubMed  PubMed Central  Google Scholar 

Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res Off J Am Assoc Cancer Res 18:1954–1965. https://doi.org/10.1158/1078-0432.CCR-11-2000

Article  CAS  Google Scholar 

Gomez-Pineda VG, Torres-Cruz FM, Vivar-Cortes CI, Hernandez-Echeagaray E (2018) Neurotrophin-3 restores synaptic plasticity in the striatum of a mouse model of Huntington’s disease. CNS Neurosci Ther 24:353–363. https://doi.org/10.1111/cns.12824

Article  CAS  PubMed  PubMed Central  Google Scholar 

de San G, Jose N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M (2022) Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 129:207–230. https://doi.org/10.1007/s00702-021-02411-2

Article  Google Scholar 

Greene-Schloesser D, Moore E, Robbins ME (2013) Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res Off J Am Assoc Cancer Res 19:2294–2300. https://doi.org/10.1158/1078-0432.CCR-11-2903

Article  CAS  Google Scholar 

Hascup KN, Findley CA, Britz J, Esperant-Hilaire N, Broderick SO, Delfino K, Tischkau S, Bartke A, Hascup ER (2021) Riluzole attenuates glutamatergic tone and cognitive decline in AbetaPP/PS1 mice. J Neurochem 156:513–523. https://doi.org/10.1111/jnc.15224

Article  CAS  PubMed  Google Scholar 

Hinkle JJ, Olschowka JA, Love TM, Williams JP, O’Banion MK (2019) Cranial irradiation mediated spine loss is sex-specific and complement receptor-3 dependent in male mice. Sci Rep 9:18899. https://doi.org/10.1038/s41598-019-55366-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinkle JJ, Olschowka JA, Williams JP, O’Banion MK (2023) Pharmacologic manipulation of complement receptor 3 prevents dendritic spine loss and cognitive impairment after acute cranial radiation. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2023.12.017

Article  PubMed  Google Scholar 

Hunsberger HC, Weitzner DS, Rudy CC, Hickman JE, Libell EM, Speer RR, Gerhardt GA, Reed MN (2015) Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem 135:381–394. https://doi.org/10.1111/jnc.13230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ifejeokwu OV, Do A, El Khatib SM, Ho NH, Zavala A, Othy S, Acharya MM (2024) Immune Checkpoint Inhibition-related Neuroinflammation Disrupts Cognitive Function. bioRxiv. https://doi.org/10.1101/2024.07.01.601087

Jehn CF, Becker B, Flath B, Nogai H, Vuong L, Schmid P, Luftner D (2015) Neurocognitive function, brain-derived neurotrophic factor (BDNF) and IL-6 levels in cancer patients with depression. J Neuroimmunol 287:88–92. https://doi.org/10.1016/j.jneuroim.2015.08.012

Article  CAS  PubMed  Google Scholar 

Ji JF, Ji SJ, Sun R, Li K, Zhang Y, Zhang LY, Tian Y (2014) Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway. Biochem Biophys Res Commun 443:646–651. https://doi.org/10.1016/j.bbrc.2013.12.031

Article  CAS  PubMed  Google Scholar 

Ji S, Tian Y, Lu Y, Sun R, Ji J, Zhang L, Duan S (2014) Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription. Brain Res 1577:77–88. https://doi.org/10.1016/j.brainres.2014.06.035

Article  CAS  PubMed  Google Scholar 

Johnson DR, Sawyer AM, Meyers CA, O’Neill BP, Wefel JS (2012) Early measures of cognitive function predict survival in patients with newly diagnosed glioblastoma. Neuro Oncol 14:808–816. https://doi.org/10.1093/neuonc/nos082

Article  PubMed  PubMed Central  Google Scholar 

Johnston KG, Berackey BT, Tran KM, Gelber A, Yu Z, MacGregor GR, Mukamel EA, Tan Z, Green KN, Xu X (2024) Single-cell spatial transcriptomics reveals distinct patterns of dysregulation in non-neuronal and neuronal cells induced by the Trem 2(R47H) Alzheimer’s risk gene mutation. Mol Psychiatry. https://doi.org/10.1038/s41380-024-02651-0

Article  PubMed 

留言 (0)

沒有登入
gif