Functional and phenotypic changes in natural killer cells expressing immune checkpoint receptors PD-1, CTLA-4, LAG-3, and TIGIT in non-small cell lung cancer: the comparative analysis of tumor microenvironment, peripheral venous blood, and tumor-draining veins

Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80(6):827–41. https://doi.org/10.1002/(sici)1097-0215(19990315)80:6%3c827::aid-ijc6%3e3.0.co;2-p.

Article  CAS  PubMed  Google Scholar 

Okamoto T, Maruyama R, Shoji F, Asoh H, Ikeda J, Miyamoto T, Nakamura T, Miyake T, Ichinose Y. Long-term survivors in stage IV non-small cell lung cancer. Lung Cancer. 2005;47(1):85–91. https://doi.org/10.1016/j.lungcan.2004.06.006.

Article  PubMed  Google Scholar 

Birim O, Kappetein AP, van Klaveren RJ, Bogers AJ. Prognostic factors in non-small cell lung cancer surgery. Eur J Surg Oncol. 2006;32(1):12–23. https://doi.org/10.1016/j.ejso.2005.10.001.

Article  CAS  PubMed  Google Scholar 

Rami-Porta R, Bolejack V, Crowley J, Ball D, Kim J, Lyons G, Rice T, Suzuki K, Thomas CF, Jr., Travis WD, Wu YL, Staging I, Prognostic Factors Committee AB, Participating I (2015) The IASLC Lung Cancer Staging Project: Proposals for the Revisions of the T Descriptors in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol 10 (7):990–1003. https://doi.org/10.1097/JTO.0000000000000559

Galon J, Angell HK, Bedognetti D, Marincola FM. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity. 2013;39(1):11–26. https://doi.org/10.1016/j.immuni.2013.07.008.

Article  CAS  PubMed  Google Scholar 

Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D’Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pages F. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232(2):199–209. https://doi.org/10.1002/path.4287.

Article  CAS  PubMed  Google Scholar 

Portale F, Di Mitri D (2023) NK cells in cancer: mechanisms of dysfunction and therapeutic potential. Int J Mol Sci 24 (11). https://doi.org/10.3390/ijms24119521

Lopes N, Vivier E, Narni-Mancinelli E. Natural killer cells and type 1 innate lymphoid cells in cancer. Semin Immunol. 2023;66:101709. https://doi.org/10.1016/j.smim.2022.101709.

Article  CAS  PubMed  Google Scholar 

Aktas E, Akdis M, Bilgic S, Disch R, Falk CS, Blaser K, Akdis C, Deniz G. Different natural killer (NK) receptor expression and immunoglobulin E (IgE) regulation by NK1 and NK2 cells. Clin Exp Immunol. 2005;140(2):301–9. https://doi.org/10.1111/j.1365-2249.2005.02777.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esen F, Deniz G, Aktas EC. PD-1, CTLA-4, LAG-3, and TIGIT: the roles of immune checkpoint receptors on the regulation of human NK cell phenotype and functions. Immunol Lett. 2021;240:15–23. https://doi.org/10.1016/j.imlet.2021.09.009.

Article  CAS  PubMed  Google Scholar 

Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10(3):230–52. https://doi.org/10.1038/cmi.2013.10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N, Hiltermann TJN, Nair S, Juergens R, Peters S, Minenza E, Wrangle JM, Rodriguez-Abreu D, Borghaei H, Blumenschein GR Jr, Villaruz LC, Havel L, Krejci J, Corral Jaime J, Chang H, Geese WJ, Bhagavatheeswaran P, Chen AC, Socinski MA, CheckMate I. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26. https://doi.org/10.1056/NEJMoa1613493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan M, Arooj S, Wang H. NK cell-based ımmune checkpoint ınhibition. Front Immunol. 2020;11:167. https://doi.org/10.3389/fimmu.2020.00167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Y, Yu H, Rozeboom L, Rivard CJ, Ellison K, Dziadziuszko R, Suda K, Ren S, Wu C, Hou L, Zhou C, Hirsch FR. LAG-3 protein expression in non-small cell lung cancer and ıts relationship with PD-1/PD-L1 and tumor-ınfiltrating lymphocytes. J Thorac Oncol. 2017;12(5):814–23. https://doi.org/10.1016/j.jtho.2017.01.019.

Article  PubMed  Google Scholar 

Torphy RJ, Schulick RD, Zhu Y (2017) Newly emerging ımmune checkpoints: promises for future cancer therapy. Int J Mol Sci 18 (12). https://doi.org/10.3390/ijms18122642

Mollavelioglu B, Cetin Aktas E, Cabioglu N, Abbasov A, Onder S, Emiroglu S, Tukenmez M, Muslumanoglu M, Igci A, Deniz G, Ozmen V. High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer. World J Surg Oncol. 2022;20(1):349. https://doi.org/10.1186/s12957-022-02810-z.

Article  PubMed  PubMed Central  Google Scholar 

Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G. Relationship between CD107a expression and cytotoxic activity. Cell Immunol. 2009;254(2):149–54. https://doi.org/10.1016/j.cellimm.2008.08.007.

Article  CAS  PubMed  Google Scholar 

Cikman DI, Esen F, Engin A, Turna A, Agkoc M, Yilmaz A, Saglam OF, Deniz G, Aktas EC. Mediastinal lymph node removal modulates natural killer cell exhaustion in patients with non-small cell lung cancer. Immunol Res. 2023;71(6):959–71. https://doi.org/10.1007/s12026-023-09410-3.

Article  CAS  PubMed  Google Scholar 

Siegel RL, Miller KD. Jemal A (2019) Cancer statistics. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

Article  PubMed  Google Scholar 

Bi J, Tian Z. NK cell exhaustion Front Immunol. 2017;8:760. https://doi.org/10.3389/fimmu.2017.00760.

Article  CAS  PubMed  Google Scholar 

Beldi-Ferchiou A, Lambert M, Dogniaux S, Vely F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbe C, Sene D, Hivroz C, Caillat-Zucman S. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget. 2016;7(45):72961–77. https://doi.org/10.18632/oncotarget.12150.

Article  PubMed  PubMed Central  Google Scholar 

Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, Moretta L, Moretta A, Marcenaro E (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 139 (1):335–346 e333. https://doi.org/10.1016/j.jaci.2016.04.025

Hannani D, Vetizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, Desbois M, Jacquelot N, Vimond N, Chouaib S, Mateus C, Allison JP, Ribas A, Wolchok JD, Yuan J, Wong P, Postow M, Mackiewicz A, Mackiewicz J, Schadendorff D, Jaeger D, Zornig I, Hassel J, Korman AJ, Bahjat K, Maio M, Calabro L, Teng MW, Smyth MJ, Eggermont A, Robert C, Kroemer G, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25(2):208–24. https://doi.org/10.1038/cr.2015.3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kerdiles Y, Ugolini S, Vivier E. T cell regulation of natural killer cells. J Exp Med. 2013;210(6):1065–8. https://doi.org/10.1084/jem.20130960.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lang S, Vujanovic NL, Wollenberg B, Whiteside TL (1998) Absence of B7.1-CD28/CTLA-4-mediated co-stimulation in human NK cells. Eur J Immunol 28 (3):780–786. https://doi.org/10.1002/(SICI)1521-4141(199803)28:03<780::AID-IMMU780>3.0.CO;2-8

Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 2013;210(9):1695–710. https://doi.org/10.1084/jem.20130579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tallerico R, Cristiani CM, Staaf E, Garofalo C, Sottile R, Capone M, Pico de Coana Y, Madonna G, Palella E, Wolodarski M, Carannante V, Mallardo D, Simeone E, Grimaldi AM, Johansson S, Frumento P, Gulletta E, Anichini A, Colucci F, Ciliberto G, Kiessling R, Karre K, Ascierto PA, Carbone E. IL-15, TIM-3 and NK cells subsets predict responsiveness to anti-CTLA-4 treatment in melanoma patients. Oncoimmunology. 2017;6(2):e1261242. https://doi.org/10.1080/2162402X.2016.1261242.

Article  CAS  PubMed  Google Scholar 

Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, Park K, Alexandru A, Lupinacci L, de la Mora JE, Sakai H, Albert I, Vergnenegre A, Peters S, Syrigos K, Barlesi F, Reck M, Borghaei H, Brahmer JR, O’Byrne KJ, Geese WJ, Bhagavatheeswaran P, Rabindran SK, Kasinathan RS, Nathan FE, Ramalingam SS. Nivolumab plus ıpilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020–31. https://doi.org/10.1056/NEJMoa1910231.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif