Caprio FZ, Sorond FA. Cerebrovascular disease: Primary and secondary stroke prevention. Med Clin North Am. 2019;103(2):295–308. https://doi.org/10.1016/j.mcna.2018.10.001.
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP et al. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients. 2023;15(5). https://doi.org/10.3390/nu15051107.
Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165260. https://doi.org/10.1016/j.bbadis.2018.09.012.
Article CAS PubMed Google Scholar
Kong LL, Gao L, Wang KX, Liu NN, Liu CD, Ma GD, et al. Pinocembrin attenuates hemorrhagic transformation after delayed t-PA treatment in thromboembolic stroke rats by regulating endogenous metabolites. Acta Pharmacol Sin. 2021;42(8):1223–34. https://doi.org/10.1038/s41401-021-00664-x.
Article CAS PubMed PubMed Central Google Scholar
Shen X, Liu Y, Luo X, Yang Z. Advances in biosynthesis, pharmacology, and pharmacokinetics of pinocembrin, a promising natural small-molecule Drug. Molecules. 2019;24(12). https://doi.org/10.3390/molecules24122323.
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol. 2022;13:1002871. https://doi.org/10.3389/fphar.2022.1002871.
Article CAS PubMed PubMed Central Google Scholar
Harapas CR, Robinson KS, Lay K, Wong J, Moreno Traspas R, Nabavizadeh N, et al. DPP9 deficiency: An inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling. Sci Immunol. 2022;7(75):eabi4611. https://doi.org/10.1126/sciimmunol.abi4611.
Article CAS PubMed PubMed Central Google Scholar
Zhong FL, Robinson K, Teo DET, Tan KY, Lim C, Harapas CR, et al. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J Biol Chem. 2018;293(49):18864–78. https://doi.org/10.1074/jbc.RA118.004350.
Article CAS PubMed PubMed Central Google Scholar
Zambetti LP, Laudisi F, Licandro G, Ricciardi-Castagnoli P, Mortellaro A. The rhapsody of NLRPs: master players of inflammation…and a lot more. Immunol Res. 2012;53(1–3):78–90. https://doi.org/10.1007/s12026-012-8272-z.
Article CAS PubMed Google Scholar
Wang J, Zhang J, Ye Y, Xu Q, Li Y, Feng S, et al. Peripheral organ injury after stroke. Front Immunol. 2022;13:901209. https://doi.org/10.3389/fimmu.2022.901209.
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Dong WH, Chen Q, Li QG, Qiu ZM. Downregulation of miR-199a-3p mediated by the CtBP2-HDAC1-FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1. Int J Biol Sci. 2019;15(12):2627–40. https://doi.org/10.7150/ijbs.37133.
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Chen T, Yang C, Bao T, Yang X, He F, et al. Secoisolariciresinol diglucoside suppresses Dextran sulfate sodium salt-induced colitis through inhibiting NLRP1 inflammasome. Int Immunopharmacol. 2020;78:105931. https://doi.org/10.1016/j.intimp.2019.105931.
Article CAS PubMed Google Scholar
Gong LJ, Wang XY, Gu WY, Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. J Neuroinflammation. 2020;17(1):337. https://doi.org/10.1186/s12974-020-02014-w.
Article CAS PubMed PubMed Central Google Scholar
Zhang X, Zhu XL, Ji BY, Cao X, Yu LJ, Zhang Y, et al. LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J Neuroinflammation. 2019;16(1):75. https://doi.org/10.1186/s12974-019-1464-x.
Article PubMed PubMed Central Google Scholar
Zhou H, Yan L, Huang H, Li X, Xia Q, Zheng L, et al. Tat-NTS peptide protects neurons against cerebral ischemia-reperfusion injury via ANXA1 SUMOylation in microglia. Theranostics. 2023;13(15):5561–83. https://doi.org/10.7150/thno.85390.
Article CAS PubMed PubMed Central Google Scholar
Li Q, Cao Y, Dang C, Han B, Han R, Ma H, et al. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med. 2020;12(4):e11002. https://doi.org/10.15252/emmm.201911002.
Article CAS PubMed PubMed Central Google Scholar
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. https://doi.org/10.1161/01.str.20.1.84.
Article CAS PubMed Google Scholar
Yu L, Zhang Y, Chen Q, He Y, Zhou H, Wan H, et al. Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway. Biomed Pharmacother. 2022;149:112836. https://doi.org/10.1016/j.biopha.2022.112836.
Article CAS PubMed Google Scholar
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci. 2021;23(1). https://doi.org/10.3390/ijms23010014.
Chen X, Wan W, Ran Q, Ye T, Sun Y, Liu Z, et al. Pinocembrin mediates antiarrhythmic e ff ects in rats with isoproterenol-induced cardiac remodeling. Eur J Pharmacol. 2022;920:174799. https://doi.org/10.1016/j.ejphar.2022.174799.
Article CAS PubMed Google Scholar
Elbatreek MH, Mahdi I, Ouchari W, Mahmoud MF, Sobeh M. Current advances on the therapeutic potential of pinocembrin: An updated review. Biomed Pharmacother. 2023;157:114032. https://doi.org/10.1016/j.biopha.2022.114032.
Article CAS PubMed Google Scholar
Shi LL, Chen BN, Gao M, Zhang HA, Li YJ, Wang L, et al. The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci. 2011;88(11–12):521–8. https://doi.org/10.1016/j.lfs.2011.01.011.
Article CAS PubMed Google Scholar
Brasil FB, de Almeida FJS, Luckachaki MD, Dall’Oglio EL, de Oliveira MR. Pinocembrin pretreatment counteracts the chlorpyrifos-induced HO-1 downregulation, mitochondrial dysfunction, and inflammation in the SH-SY5Y cells. Metab Brain Dis. 2021;36(8):2377–91. https://doi.org/10.1007/s11011-021-00803-7.
Article CAS PubMed Google Scholar
Waumans Y, Vliegen G, Maes L, Rombouts M, Declerck K, Van Der Veken P, et al. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice. Inflammation. 2016;39(1):413–24. https://doi.org/10.1007/s10753-015-0263-5.
Article CAS PubMed Google Scholar
Taabazuing CY, Griswold AR, Bachovchin DA. The NLRP1 and CARD8 inflammasomes. Immunol Rev. 2020;297(1):13–25. https://doi.org/10.1111/imr.12884.
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Han M, Shi Q, Li X, Mo J, Liu Y, et al. Li, P HY-021068 alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1 inflammasome and restoring autophagy function in mice. Exp Neurol. 2024;371:114583. https://doi.org/10.1016/j.expneurol.2023.114583.
Article CAS PubMed Google Scholar
Faura J, Ramiro L, Simats A, Ma F, Penalba A, Gasull T et al. Evaluation and characterization of post-stroke lung damage in a Murine Model of Cerebral Ischemia. Int J Mol Sci. 2022;23(15). https://doi.org/10.3390/ijms23158093.
Samary CS, Ramos AB, Maia LA, Rocha NN, Santos CL, Magalhaes RF, et al. Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Crit Care. 2018;22(1):249. https://doi.org/10.1186/s13054-018-2164-0.
Article PubMed PubMed Central Google Scholar
Yi Y, Tianxin Y, Zhangchi L, Cui Z, Weiguo W, Bo Y. Pinocembrin attenuates susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension. Eur J Pharmacol. 2023;960:176169. https://doi.org/10.1016/j.ejphar.2023.176169.
留言 (0)