Dataset augmentation with multiple contrasts images in super-resolution processing of T1-weighted brain magnetic resonance images

Ronneberger O, Fischer P, Brox T. 2015–u-net. MIC- CAI;2015; 1–8. https://doi.org/10.48550/arXiv.1505.04597

Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognition. CVPR 2017. 2017;2017-January: 5967–5976. https://doi.org/10.1109/CVPR.2017.632

Akagi M, Nakamura Y, Higaki T, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol. 2019;29:6163–71. https://doi.org/10.1007/s00330-019-06170-3.

Article  PubMed  Google Scholar 

Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc – Int Symp Biomed Imaging. 2016;2016: 514–517. https://doi.org/10.1109/ISBI.2016.7493320

Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Med. 2018;15: e1002686. https://doi.org/10.1371/journal.pmed.1002686.

Article  PubMed  PubMed Central  Google Scholar 

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. IEEE Conf Comput Vis Pattern Recognit. 2009;2010:248–55. https://doi.org/10.1109/CVPR.2009.5206848.

Article  Google Scholar 

Yang S, Xiao W, Zhang M, Guo S, Zhao J, Shen F. Image data augmentation for deep learning: A survey. 2022. https://doi.org/10.48550/arXiv.2204.08610

Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307. https://doi.org/10.1109/TPAMI.2015.2439281.

Article  PubMed  Google Scholar 

Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26:3142–55. https://doi.org/10.1109/TIP.2017.2662206.

Article  PubMed  Google Scholar 

Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. Proc - 30th IEEE Conf Comput Vis Pattern Recognition. CVPR 2017. 2017;2017-January: 105–114. https://doi.org/10.1109/CVPR.2017.19

Wicaksono KP, Fujimoto K, Fushimi Y, et al. Super-resolution application of generative adversarial network on brain time-of-flight MR angiography: Image quality and diagnostic utility evaluation. Eur Radiol. 2023;33:936–46. https://doi.org/10.1007/s00330-022-09103-9.

Article  PubMed  Google Scholar 

Yoshida N, Kageyama H, Akai H, Yasaka K, Sugawara H, Okada Y, Kunimatsu A. Motion correction in MR image for analysis of VSRAD using generative adversarial network. PLoS ONE. 2022;17: e0274576. https://doi.org/10.1371/journal.pone.0274576.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng K, Zheng H, Cai C, Yang Y, Zhang K, Chen Z. Simultaneous single- and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med. 2018;99:133–41. https://doi.org/10.1016/j.compbiomed.2018.06.010.

Article  PubMed  Google Scholar 

Lyu Q, Shan H, Steber C, Helis C, Whitlow C, Chan M, Wang G. Multi-contrast super-resolution MRI through a progressive network. IEEE Trans Med Imaging. 2020;39:2738–49. https://doi.org/10.1109/TMI.2020.2974858.

Article  PubMed  PubMed Central  Google Scholar 

Lyu J, Li G, Wang C, Cai Q, Dou Q, Zhang D, Qin J. Multicontrast MRI super-resolution via transformer-empowered multiscale contextual matching and aggregation. IEEE Trans Neural Netw Learn Syst 2023; https://doi.org/10.1109/TNNLS.2023.3250491

Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79:3055–71. https://doi.org/10.1002/mrm.26977.

Article  PubMed  Google Scholar 

Zhang Y, Han Y, Zhang J. MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation. Math Biosci Eng. 2023;20:20510–27. https://doi.org/10.3934/mbe.2023907.

Article  PubMed  Google Scholar 

Kihira S, Mei X, Mahmoudi K, et al. U-Net Based Segmentation and Characterization of Gliomas. Cancers (Basel). 2022;14:1–10. https://doi.org/10.3390/cancers14184457.

Article  CAS  Google Scholar 

Yuhua C, Feng S, Anthony G. C, et al. Efficient and Accurate MRI Super-Resolution using a Generative Adversarial Network and 3D Multi-Level Densely Connected Network. https://doi.org/10.48550/arXiv.1803.01417

Xue H, Yao Y, Teng Y. Multi-modal tumor segmentation methods based on deep learning: a narrative review. Quant Imaging Med Surg. 2024;14:1122–40. https://doi.org/10.21037/qims-23-818.

Article  PubMed  PubMed Central  Google Scholar 

Feng CM, Wang K, Lu S, et al. Brain MRI super-resolution using coupled-projection residual network. Neurocomputing. 2021;456:190–9. https://doi.org/10.1016/j.neucom.2021.01.130.

Article  Google Scholar 

Roy M, Upadhyaya B, Rai J, et al. Resolution Enhancement of Brain MRI Images Using Deep Learning. Eng Proc. 2023; https://doi.org/10.3390/engproc2023059158

Pham CH, Tor-Diez C, Meunier H, et al. Multiscale brain MRI super-resolution using deep 3D convolutional networks. Comput Med Imaging Graph. 2019; https://doi.org/10.1016/j.compmedimag.2019.101647

Yasaka K, Kanzawa J, Nakaya M, et al. Super-resolution deep learning reconstruction for 3D brain MR imaging: improvement of cranial nerve depiction and interobserver agreement in evaluations of neurovascular conflict. Acad Radiol. 2024; https://doi.org/10.1016/j.acra.2024.06.010

https://www.tensorflow.org/tutorials/generative/pix2pix?hl=ja

Lim B, Son S, Kim H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work. 2017; https://doi.org/10.1109/CVPRW.2017.151

Yoshimura T, Nishioka K, Hashimoto T, et al. Prostatic urinary tract visualization with super-resolution deep learning models. PLoS ONE. 2023;18:1–12. https://doi.org/10.1371/journal.pone.0280076.

Article  CAS  Google Scholar 

Fiscone C, Curti N, Ceccarelli M, et al. Generalizing the Enhanced-DeepSuper-Resolution Neural Network to Brain MR Images: A Retrospective Study on the Cam-CAN Dataset. eNeuro. 2024; https://doi.org/10.1523/ENEURO.0458-22.2023

Zhou Z, Ma A, Feng Q, et al. Super-resolution of brain tumor MRI images based on deep learning. J Appl Clin Med Phys. 2022;23: e13758. https://doi.org/10.1002/acm2.13758.

Article  PubMed  PubMed Central  Google Scholar 

Sanchez I, Vilaplana V. Brain MRI super-resolution using 3D generative adversarial networks. 2018; https://doi.org/10.48550/arXiv.1812.11440

Wang Z, Simoncelli E, Bovik AC. Multi-scale structural similarity for image quality assessment. N Y. 2003;2003(2):9–13. https://doi.org/10.1109/ACSSC.2003.1292216.

Article  Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

Article  CAS  PubMed  Google Scholar 

Nemoto T, Futakami N, Kunieda E, et al. Effects of sample size and data augmentation on U-Net-based automatic segmentation of various organs. Radiol Phys Technol. 2021;14:318–27. https://doi.org/10.1007/s12194-021-00630-6.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif