METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells Under the Inflammatory Microenvironment Through the miR-141-3p/ZEB1 Axis

Kwon, T., Lamster, I. B., & Levin, L. (2021). Current concepts in the management of periodontitis. Int Dent J, 71(6), 462–476. https://doi.org/10.1111/idj.12630.

Article  PubMed  PubMed Central  Google Scholar 

Frencken, J. E., Sharma, P., Stenhouse, L., Green, D., Laverty, D., & Dietrich, T. (2017). Global epidemiology of dental caries and severe periodontitis - a comprehensive review. J Clin Periodontol, 44(Suppl 18), S94–S105. https://doi.org/10.1111/jcpe.12677.

Article  PubMed  Google Scholar 

Marconi, G. D., Fonticoli, L., Guarnieri, S., Cavalcanti, M., Franchi, S., Gatta, V., Trubiani, O., Pizzicannella, J., & Diomede, F. (2021). Ascorbic acid: A new player of epigenetic regulation in LPS-gingivalis treated human periodontal ligament stem cells. Oxid Med Cell Longev, 2021, 6679708 https://doi.org/10.1155/2021/6679708.

Article  PubMed  PubMed Central  Google Scholar 

Di Vito, A., Bria, J., Antonelli, A., Mesuraca, M., Barni, T., Giudice, A., & Chiarella, E. (2023). A review of novel strategies for human periodontal ligament stem cell ex vivo expansion: are they an evidence-based promise for regenerative periodontal therapy? Int J Mol Sci, 24(9), 7798 https://doi.org/10.3390/ijms24097798.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Z., Deng, M., Hao, M., & Tang, J. (2021). Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol, 110(3), 565–576. https://doi.org/10.1002/JLB.4MR0421-750R.

Article  PubMed  Google Scholar 

Jiang, X., Liu, B., Nie, Z., Duan, L., Xiong, Q., Jin, Z., Yang, C., & Chen, Y. (2021). The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther, 6(1), 74 https://doi.org/10.1038/s41392-020-00450-x.

Article  PubMed  PubMed Central  Google Scholar 

Liu, S., Zhuo, L., Wang, J., Zhang, Q., Li, Q., Li, G., Yan, L., Jin, T., Pan, T., Sui, X., Lv, Q., & Xie, T. (2020). METTL3 plays multiple functions in biological processes. Am J Cancer Res, 10(6), 1631–1646.

PubMed  PubMed Central  Google Scholar 

Sun, W., Liu, J., Zhang, X., Zhang, X., Gao, J., Chen, X., Wang, X., Qin, W., & Jin, Z. (2022). Long noncoding RNA and mRNA m6A modification analyses of periodontal ligament stem cells from the periodontitis microenvironment exposed to static mechanical strain. Stem Cells Int, 2022, 6243004 https://doi.org/10.1155/2022/6243004.

Article  PubMed  PubMed Central  Google Scholar 

Sun, X., Meng, X., Piao, Y., Dong, S., & Dong, Q. (2024). METTL3 promotes osteogenic differentiation of human periodontal ligament stem cells through IGF2BP1-Mediated regulation of Runx2 stability. Int J Med Sci, 21(4), 664–673. https://doi.org/10.7150/ijms.90485.

Article  PubMed  PubMed Central  Google Scholar 

Saliminejad, K., Khorram Khorshid, H. R., Soleymani Fard, S., & Ghaffari, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol, 234(5), 5451–5465. https://doi.org/10.1002/jcp.27486.

Article  PubMed  Google Scholar 

Erson-Bensan, A. E., & Begik, O. (2017). m6A Modification and Implications for microRNAs. Microrna, 6(2), 97–101. https://doi.org/10.2174/2211536606666170511102219.

Article  PubMed  Google Scholar 

Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N., & Tavazoie, S. F. (2015). N6-methyladenosine marks primary microRNAs for processing. Nature, 519(7544), 482–485. https://doi.org/10.1038/nature14281.

Article  PubMed  PubMed Central  Google Scholar 

Cao, J., Zhang, Q., Yang, Q., Yu, Y., Meng, M., & Zou, J. (2023). Epigenetic regulation of osteogenic differentiation of periodontal ligament stem cells in periodontitis. Oral Dis, 29(7), 2529–2537. https://doi.org/10.1111/odi.14491.

Article  PubMed  Google Scholar 

Liu, M., Chen, R., Xu, Y., Zheng, J., Wang, M., & Wang, P. (2023). Exosomal miR-141-3p from PDLSCs alleviates high glucose-induced senescence of PDLSCs by activating the KEAP1-NRF2 signaling pathway. Stem Cells Int, 2023, 7136819 https://doi.org/10.1155/2023/7136819.

Article  PubMed  PubMed Central  Google Scholar 

Scott, C. L., & Omilusik, K. D. (2019). ZEBs: Novel players in immune cell development and function. Trends Immunol, 40(5), 431–446. https://doi.org/10.1016/j.it.2019.03.001.

Article  PubMed  Google Scholar 

Ouyang, Z., Tan, T., Zhang, X., Wan, J., Zhou, Y., Jiang, G., Yang, D., Guo, X., & Liu, T. (2019). CircRNA hsa_circ_0074834 promotes the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by acting as a ceRNA for miR-942-5p. Cell Death Dis, 10(12), 932 https://doi.org/10.1038/s41419-019-2161-5.

Article  PubMed  PubMed Central  Google Scholar 

Krongbaramee, T., Zhu, M., Qian, Q., Zhang, Z., Eliason, S., Shu, Y., Qian, F., Akkouch, A., Su, D., Amendt, B. A., Yang, L., & Hong, L. (2021). Plasmid encoding microRNA-200c ameliorates periodontitis and systemic inflammation in obese mice. Mol Ther Nucleic Acids, 23, 1204–1216. https://doi.org/10.1016/j.omtn.2021.01.030.

Article  PubMed  PubMed Central  Google Scholar 

Sztukowska, M. N., Ojo, A., Ahmed, S., Carenbauer, A. L., Wang, Q., Shumway, B., Jenkinson, H. F., Wang, H., Darling, D. S., & Lamont, R. J. (2016). Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell Microbiol, 18(6), 844–858. https://doi.org/10.1111/cmi.12554.

Article  PubMed  PubMed Central  Google Scholar 

Xu, C., Shi, H., Jiang, X., Fan, Y., Huang, D., Qi, X., & Cheng, Q. (2021). ZEB1 mediates bone marrow mesenchymal stem cell osteogenic differentiation partly via Wnt/beta-Catenin signaling. Front Mol Biosci, 8, 682728 https://doi.org/10.3389/fmolb.2021.682728.

Article  PubMed  PubMed Central  Google Scholar 

Qian, L., Ni, J., & Zhang, Z. (2024). ZEB1 interferes with human periodontal ligament stem cell proliferation and differentiation. Oral Dis, 30(4), 2599–2608. https://doi.org/10.1111/odi.14673.

Article  PubMed  Google Scholar 

Jiang, J., Zhang, N., Song, H., Yang, Y., Li, J., & Hu, X. (2023). Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-kappaB/NLRP3 inflammasome signaling. BMC Oral Health, 23(1), 137 https://doi.org/10.1186/s12903-023-02827-0.

Article  PubMed  PubMed Central  Google Scholar 

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.

Article  PubMed  Google Scholar 

Ma, L., Wei, J., Zeng, Y., Liu, J., Xiao, E., Kang, Y., & Kang, Y. (2022). Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis. Drug Deliv, 29(1), 440–453. https://doi.org/10.1080/10717544.2022.2030428.

Article  PubMed  PubMed Central  Google Scholar 

Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res, 42(Database issue), D92–97. https://doi.org/10.1093/nar/gkt1248.

Article  PubMed  Google Scholar 

McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., & Bartel, D. P. (2019). The biochemical basis of microRNA targeting efficacy. Science, 366(6472), e aav1741 https://doi.org/10.1126/science.aav1741.

Article  Google Scholar 

Chen, Y., & Wang, X. (2020). miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res, 48(D1), D127–D131. https://doi.org/10.1093/nar/gkz757.

Article  PubMed  Google Scholar 

Huang, H. Y., Lin, Y. C., Cui, S., Huang, Y., Tang, Y., Xu, J., Bao, J., Li, Y., Wen, J., Zuo, H., Wang, W., Li, J., Ni, J., Ruan, Y., Li, L., Chen, Y., Xie, Y., Zhu, Z., Cai, X., Chen, X., Yao, L., Chen, Y., Luo, Y., LuXu, S., Luo, M., Chiu, C. M., Ma, K., Zhu, L., Cheng, G. J., Bai, C., Chiang, Y. C., Wang, L., Wei, F., Lee, T. Y., & Huang, H. D. (2022). miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res, 50(D1), D222–D230..

Jin, S. H., Zhou, J. G., Guan, X. Y., Bai, G. H., Liu, J. G., & Chen, L. W. (2020). Development of an miRNA-Array-based diagnostic signature for periodontitis. Front Genet, 11, 577585 https://doi.org/10.3389/fgene.2020.577585.

Article  PubMed  PubMed Central  Google Scholar 

Slots, J. (2017). Periodontitis: facts, fallacies and the future. Periodontol 2000, 75(1), 7–23. https://doi.org/10.1111/prd.12221.

Article  PubMed  Google Scholar 

Graziani, F., Karapetsa, D., Alonso, B., & Herrera, D. (2017). Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000, 75(1), 152–188. https://doi.org/10.1111/prd.12201.

留言 (0)

沒有登入
gif