Giusti B, Sticchi E, De Cario R, Magi A, Nistri S, Pepe G (2017) Genetic bases of bicuspid aortic valve: the contribution of traditional and high-throughput sequencing approaches on research and diagnosis. Front Physiol 8:612. https://doi.org/10.3389/fphys.2017.00612
Article PubMed PubMed Central Google Scholar
Tessler I, Albuisson J, Goudot G, Carmi S, Shpitzen S, Messas E, Gilon D, Durst R (2021) Bicuspid aortic valve: genetic and clinical insights. AORTA 9:139–146. https://doi.org/10.1055/s-0041-1730294
Article PubMed PubMed Central Google Scholar
Andreassi MG, Della Corte A (2016) Genetics of bicuspid aortic valve aortopathy. Curr Opin Cardiol 31:585–592. https://doi.org/10.1097/HCO.0000000000000328
Huntington K, Hunter AG, Chan KL (1997) A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol 30:1809–1812. https://doi.org/10.1016/s0735-1097(97)00372-0
Article CAS PubMed Google Scholar
Spaziani G, Girolami F, Arcieri L, Calabri GB, Porcedda G, Di Filippo C, Surace FC, Pozzi M, Favilli S (2022) Bicuspid aortic valve in children and adolescents: a comprehensive review. Diagnostics (Basel) 12:1751. https://doi.org/10.3390/diagnostics12071751
Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW (2004) Bicuspid aortic valve is heritable. J Am Coll Cardiol 44:138–143. https://doi.org/10.1016/j.jacc.2004.03.050
Musfee FI, Guo D, Pinard AC, Bamshad MJ, Milewicz DM, Prakash SK (2020) Rare deleterious variants of NOTCH1, GATA4, SMAD6, and ROBO4 are enriched in BAV with early onset complications but not in BAV with heritable thoracic aortic disease. Mol Genet Genom Med 8:e1406. https://doi.org/10.1002/mgg3.1406
Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, Zhang XL, Li RG, Xu YJ, Hou XM, Fang WY, Liu X, Yang YQ (2014) A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol 114:1891–1895. https://doi.org/10.1016/j.amjcard.2014.09.028
Article CAS PubMed Google Scholar
Balistreri CR, Forte M, Greco E, Paneni F, Cavarretta E, Frati G, Sciarretta S (2019) An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. J Mol Cell Cardiol 132:146–153. https://doi.org/10.1016/j.yjmcc.2019.05.013
Article CAS PubMed Google Scholar
Pan S, Lai H, Shen Y, Breeze C, Beck S, Hong T, Wang C, Teschendorff AE (2017) DNA methylome analysis reveals distinct epigenetic patterns of ascending aortic dissection and bicuspid aortic valve. Cardiovasc Res 113:692–704. https://doi.org/10.1093/cvr/cvx050
Article CAS PubMed Google Scholar
Martínez-Micaelo N, Beltrán-Debón R, Baiges I, Faiges M, Alegret JM (2017) Specific circulating microRNA signature of bicuspid aortic valve disease. J Transl Med 15:76. https://doi.org/10.1186/s12967-017-1176-x
Article CAS PubMed PubMed Central Google Scholar
Dituri F, Cossu C, Mancarella S, Giannelli G (2019) The interactivity between TGFβ and BMP signaling in organogenesis, fibrosis, and cancer. Cells 8:1130. https://doi.org/10.3390/cells8101130
Article CAS PubMed PubMed Central Google Scholar
Garside VC, Chang AC, Karsan A, Hoodless PA (2013) Co-ordinating notch, BMP, and TGF-β signaling during heart valve development. Cell Mol Life Sci 70:2899–2917. https://doi.org/10.1007/s00018-012-1197-9
Article CAS PubMed Google Scholar
Hall BE, Wankhade UD, Konkel JE, Cherukuri K, Nagineni CN, Flanders KC, Arany PR, Chen W, Rane SG, Kulkarni AB (2013) Transforming growth factor-β3 (TGF-β3) knock-in ameliorates inflammation due to TGF-β1 deficiency while promoting glucose tolerance. J Biol Chem 288:32074–32092. https://doi.org/10.1074/jbc.M113.480764
Article CAS PubMed PubMed Central Google Scholar
Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358. https://doi.org/10.1056/NEJM200005043421807
Article CAS PubMed Google Scholar
Saxena R, Chawla YK, Verma I, Kaur J (2014) Effect of IL-12B, IL-2, TGF-β1, and IL-4 polymorphism and expression on hepatitis B progression. J Interf Cytokine Res 34:117–128. https://doi.org/10.1089/jir.2013.0043
Yassine NM, Shahram JT, Body SC (2017) Pathogenic mechanisms of bicuspid aortic valve aortopathy. Front Physiol 8:687. https://doi.org/10.3389/fphys.2017.00687
Article PubMed PubMed Central Google Scholar
Guzzardi DG, Barker AJ, van Ooij P et al (2015) Valve-Related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 66:892–900. https://doi.org/10.1016/j.jacc.2015.06.1310
Article PubMed PubMed Central Google Scholar
Balistreri CR, Pisano C, Candore G, Maresi E, Codispoti M, Ruvolo G (2013) Focus on the unique mechanisms involved in thoracic aortic aneurysm formation in bicuspid aortic valve versus tricuspid aortic valve patients: clinical implications of a pilot study. Eur J Cardiothorac Surg 43:e180-186. https://doi.org/10.1093/ejcts/ezs630
Jones JA, Spinale FG, Ikonomidis JS (2009) Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc Res 46:119–137. https://doi.org/10.1159/000151766
Article CAS PubMed Google Scholar
Nataatmadja M, West J, Prabowo S, West M (2013) Angiotensin II receptor antagonism reduces transforming growth factor beta and smad signaling in thoracic aortic aneurysm. Ochsner J 13:42–48
PubMed PubMed Central Google Scholar
Grewal N, Dolmaci O, Klautz A, Legue J, Driessen A, Klautz R, Poelmann R (2023) The role of transforming growth factor beta in bicuspid aortic valve aortopathy. Indian J Thorac Cardiovasc Surg 39:270–279. https://doi.org/10.1007/s12055-023-01513-8
Article PubMed PubMed Central Google Scholar
Hillebrand M, Millot N, Sheikhzadeh S, Rybczynski M, Gerth S, Kölbel T, Keyser B, Kutsche K, Robinson PN, Berger J, Mir TS, Zeller T, Blankenberg S, von Kodolitsch Y, Goldmann B (2014) Total serum transforming growth factor-β1 is elevated in the entire spectrum of genetic aortic syndromes. Clin Cardiol 37:672–679. https://doi.org/10.1002/clc.22320
Article PubMed PubMed Central Google Scholar
Rueda-Martínez C, Lamas O, Carrasco-Chinchilla F, Robledo-Carmona J, Porras C, Sánchez-Espín G, Navarro MJ, Fernández B (2017) Increased blood levels of transforming growth factor β in patients with aortic dilatation. Interact Cardiovasc Thorac Surg 25:571–574. https://doi.org/10.1093/icvts/ivx153
Forte A, Bancone C, Cobellis G, Buonocore M, Santarpino G, Fischlein TJM, Cipollaro M, De Feo M, Della Corte A (2017) A possible early biomarker for bicuspid aortopathy: circulating transforming growth factor β-1 to soluble endoglin ratio. Circ Res 120:1800–1811. https://doi.org/10.1161/CIRCRESAHA.117.310833
Article CAS PubMed Google Scholar
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A (2017) Mechanisms of smooth muscle cell differentiation are distinctly altered in thoracic aortic aneurysms associated with bicuspid or tricuspid aortic valves. Front Physiol 8:536. https://doi.org/10.3389/fphys.2017.00536
Article PubMed PubMed Central Google Scholar
Paloschi V, Gådin JR, Khan S, Björck HM, Du L, Maleki S, Roy J, Lindeman JH, Mohamed SA, Tsuda T, Franco-Cereceda A, Eriksson P (2015) Aneurysm development in patients with a bicuspid aortic valve is not associated with transforming growth factor-β activation. Arterioscler Thromb Vasc Biol 35:973–980. https://doi.org/10.1161/ATVBAHA.114.304996
Article CAS PubMed Google Scholar
Bons LR, Geenen LW, van den Hoven AT, Dik WA, van den Bosch AE, Duijnhouwer AL, Siebelink HJ, Budde RPJ, Boersma E, Wessels MW, van de Laar IMBH, DeRuiter MC, Goumans MJ, Loeys BL, Roos-Hesselink JW (2020) Blood biomarkers in patients with bicuspid aortic valve disease. J Cardiol 76:287–294.
留言 (0)