Simulation of the temperature distribution of kidney stones induced by thulium fiber laser and Ho: YAG laser lithotripsy

Traxer O, Keller EX (2020) Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium: YAG laser. World J Urol 38:1883–1894. https://doi.org/10.1007/s00345-019-02654-5

Article  PubMed  CAS  Google Scholar 

Teichman JM, Vassar GJ, Bishoff JT, Bellman GC (1998) Holmium: YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol 159(1):17–23. https://doi.org/10.1016/S0022-5347(01)63998-3

Article  PubMed  CAS  Google Scholar 

Kronenberg P, Traxer O (2014) The truth about laser fiber diameters. Urology 84:1301–1307

Article  PubMed  Google Scholar 

Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium: yttrium–aluminum–garnet (Ho: YAG) laser lithotripter settings and laser fibers. World J Urol 33:463–469. https://doi.org/10.1007/s00345-014-1395-1

Article  PubMed  Google Scholar 

Keller EX, De Coninck V, Audouin M, Doizi S, Bazin D, Daudon M, Traxer O (2019) Fragments and dust after Holmium laser lithotripsy with or without “Moses technology”: How are they different? J Biophotonics 12(4):e201800227. https://doi.org/10.1002/jbio.201800227

Article  PubMed  CAS  Google Scholar 

Fried NM, Irby PB (2018) Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol 15(9):563–573. Available from: https://www.nature.com/articles/s41585-018-0035-8. Accessed 26 Feb 2024

Doizi S, Keller EX, De Coninck V, Traxer O (2018) Dusting technique for lithotripsy: what does it mean? Nat Rev Urol 15(11):653–654. Available from: https://www.nature.com/articles/s41585-018-0042-9. Accessed 09/11/2024

Spore SS, Teichman JMH, Corbin NS, Champion PC, Williamson EA, Glickman RD (2009) Holmium:YAG Lithotripsy: Optimal Power Settings. https://home.liebertpub.com/end [Internet]. [cited 2024 Nov 9];13:559–66. https://doi.org/10.1089/end.1999.13.559

Wilson CR, Kennedy JD, Irby PB, Fried NM (2018) Miniature ureteroscope distal tip designs for potential use in thulium fiber laser lithotripsy. J Biomed Opt 23:076003. https://doi.org/10.1117/1.JBO.23.7.076003.full

Article  Google Scholar 

Kronenberg P, Traxer O (2013) V1718 LASER fibers, pulse energy and retropulsion-what we can see and what we can’t. J Urol 189(4S):e707–e707. https://doi.org/10.1016/j.juro.2013.02.2964

Article  Google Scholar 

Pasqui F, Dubosq F, Tchala K, Tligui M, Gattegno B, Thibault P et al (2004) Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. Eur Urol 45:58–64

Article  PubMed  Google Scholar 

Mues AC, Teichman JMH, Knudsen BE (2009) Quantification of holmium:yttrium aluminum garnet optical tip degradation. https://home.liebertpub.com/end [Internet]. [cited 2024 Nov 9];23:1425–8. https://doi.org/10.1089/end.2009.0384

Wollin DA, Ackerman A, Yang C, Chen T, Simmons WN, Preminger GM et al (2017) Variable pulse duration from a new holmium:YAG laser: the effect on stone comminution, fiber tip degradation, and retropulsion in a dusting model. Urology 103:47–51. Available from: http://www.goldjournal.net/article/S0090429517300328/fulltext. Accessed 09/11/2024

Scott NJ, Cilip CM, Fried NM (2009) Thulium fiber laser ablation of urinary Stones through small-core optical fibers. IEEE J Sel Top Quantum Electron 15:435–440

Article  CAS  Google Scholar 

Blackmon RL, Irby PB, Fried NM (2010) Holmium:YAG (λ = 2,120 nm) versus thulium fiber (λ = 1,908 nm) laser lithotripsy. Lasers Surg Med 42(3):232–236. https://doi.org/10.1002/lsm.20893

Article  PubMed  Google Scholar 

Fried NM (2005) Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm. Lasers Surg Med 37:53–8. https://doi.org/10.1002/lsm.20196

Article  PubMed  Google Scholar 

Hardy LA, Wilson CR, Irby PB, Fried NM (2014) Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 19:128001. https://doi.org/10.1117/1.JBO.19.12.128001.full

Article  PubMed  Google Scholar 

Blackmon RL, Fried NM, Irby PB (2011) Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 16:071403. https://doi.org/10.1117/1.3564884.full

Article  PubMed  Google Scholar 

Hall LA, Gonzalez DA, Fried NM (2019) Thulium fiber laser ablation of kidney stones using an automated, vibrating fiber. J Biomed Opt 24:038001. https://doi.org/10.1117/1.JBO.24.3.038001.full

Article  PubMed  PubMed Central  CAS  Google Scholar 

Soto-Palou F, Chen J, Medairos R, Zhong P, Antonelli J, Preminger GM et al (2023) In Pursuit of the optimal dusting settings with the thulium fiber laser: an in vitro assessment. J Endourol 37:914–20. https://doi.org/10.1089/end.2023.0168

Article  PubMed  PubMed Central  Google Scholar 

Maxwell AD, MacConaghy B, Harper JD, Aldoukhi AH, Hall TL, Roberts WW (2019) Simulation of laser lithotripsy-induced heating in the urinary tract. J Endourol 33:113–9. https://doi.org/10.1089/end.2018.0485

Article  PubMed  PubMed Central  Google Scholar 

Williams JG, Goldsmith L, Moulton DE, Waters SL, Turney BW (2020) A temperature model for laser lithotripsy. World J Urol 39:1707–16. https://doi.org/10.1007/s00345-020-03357-y

Article  PubMed  PubMed Central  Google Scholar 

Marques-Pinto A, Santos-Reis C, Castanheira de Oliveira M, Fraga A, Cavadas V (2022) Prediction models of low-power holmium laser effectiveness in renal stone lithotripsy during retrograde intrarenal surgery. Lasers Med Sci 37:1873–80. https://doi.org/10.1007/s10103-021-03445-4

Article  PubMed  Google Scholar 

Wang Y, Hahn DW (2019) A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum. Appl Phys A Mater Sci Process 125:1–15. https://doi.org/10.1007/s00339-019-2951-8

Article  CAS  Google Scholar 

Doualle T, Reymond M, Pontillon Y, Gallais L (2021) Laser ablation of graphite with near infrared microsecond pulses. Appl Phys A Mater Sci Process 127:1–12. https://doi.org/10.1007/s00339-021-04815-z

Article  CAS  Google Scholar 

Khanigi AF, Shahverdi H, Farnia A (2024) Experimental and numerical investigation of residual stresses in laser shock peened Rene-80 Ni-based superalloy. Appl Phys A 130:1–15. https://doi.org/10.1007/s00339-024-07746-7

Article  CAS  Google Scholar 

Singh KS, Sharma AK (2024) Simulation on mass removal by recoil pressure, thermal stress, and bubble growth of concrete irradiated by a millisecond Nd: YAG pulsed laser. Optik (Stuttg) 302:171699. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0030402624000974. Accessed 02/03/2024

Singh KS, Sharma AK (2021) Effect of magnetic field-dependent effective thermal conductivity of melted layer on nanosecond laser ablation of copper and formation of nanoparticles at atmospheric air pressure. J Appl Phys 130. https://doi.org/10.1063/5.0051286

Singh KS, Sharma AK (2017) Time-integrated optical emission studies on laser-produced copper plasma in the presence of magnetic field in air ambient at atmospheric pressure. Appl Phys A Mater Sci Process 123:325

Article  Google Scholar 

Singh KS, Sharma AK (2016) Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere. J Appl Phys 119:183301

Article  Google Scholar 

Conde J, Lusquiños F, González P, Serra J, León B, Dima A et al (2004) Finite element analysis of the initial stages of the laser ablation process. Thin Solid Films 453:323–327

Article  Google Scholar 

Oliveira V, Vilar R (2007) Finite element simulation of pulsed laser ablation of titanium carbide. Appl Surf Sci 253:7810–7814

Article  CAS  Google Scholar 

Chen J, Mishra A, Medairos R, Antonelli J, Preminger GM, Lipkin ME et al (2023) In vitro investigation of stone ablation efficiency, char formation, spark generation, and damage mechanism produced by thulium fiber laser. Urolithiasis 51:1–10. https://doi.org/10.1007/s00240-023-01501-y

Article  CAS  Google Scholar 

Mishra A, Medairos R, Chen J, Soto-Palou F, Wu Y, Antonelli J et al (2024) Exploring optimal settings for safe and effective thulium fibre laser lithotripsy in a kidney model. BJU Int 133:223–30. https://doi.org/10.1111/bju.16218

Article  PubMed  CAS  Google Scholar 

Yang B, Ray A, Zhang JJ, Peng S, O’Brien M, Turney B (2023) Stone ablation efficacy: a comparison of a thulium fibre laser and two pulse-modulated holmium:YAG lasers. Urolithiasis 51:1–9. https://doi.org/10.1007/s00240-022-01393-4

Article  CAS  Google Scholar 

Chan KF, Pfefer TJ, Teichman JMH, Welch AJ (2004) A perspective on laser lithotripsy: the fragmentation processes. J Endourol 15:257–73. https://doi.org/10.1089/089277901750161737

Article  Google Scholar 

GESTIS Substance Database [Internet]. Available from: www.dguv.de/ifa/gestis-database. Accessed 12/02/2023

https://webbook.nist.gov. Accessed 12/02/2023

Pal D, Sen R, Pal A (2017) Design of all-fiber thulium laser in CW and QCW mode of operation for medical use. Phys Status Solidi C 14:1600127. https://doi.org/10.1002/pssc.201600127

留言 (0)

沒有登入
gif