Mitochondrial dysfunction has a central role in diabetic kidney disease

Johansen, K. L. et al. US Renal Data System 2020 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 77(Suppl. 1), A7–A8 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Li, H. et al. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. Cell Metab. 36, 1105–1125.e10 (2024).

Article  CAS  PubMed  Google Scholar 

Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

Article  CAS  PubMed  Google Scholar 

Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. 134, e172963 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Choi, Y. J. et al. Attenuated kidney oxidative metabolism in young adults with type 1 diabetes. J. Clin. Invest. https://doi.org/10.1172/JCI183984 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Darshi, M. et al. Glycolytic lactate in diabetic kidney disease. JCI Insight 9, e168825 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Mise, K. et al. NDUFS4 regulates cristae remodeling in diabetic kidney disease. Nat. Commun. 15, 1965 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, Y., Xu, Y., Chen, W. & Qiu, Z. Stomatin-like protein-2: a potential target to treat mitochondrial cardiomyopathy. Heart Lung Circ. 30, 1449–1455 (2021).

Article  PubMed  Google Scholar 

Hájek, P., Chomyn, A. & Attardi, G. Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J. Biol. Chem. 282, 5670–5681 (2007).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif