Crosstalk between glomeruli and tubules

Striker, G. E., Schainuck, L. I., Cutler, R. E. & Benditt, E. P. Structural-functional correlations in renal disease. I. A method for assaying and classifying histopathologic changes in renal disease. Hum. Pathol. 1, 615–630 (1970).

Article  CAS  PubMed  Google Scholar 

Schainuck, L. I., Striker, G. E., Cutler, R. E. & Benditt, E. P. Structural-functional correlations in renal disease. II. The correlations. Hum. Pathol. 1, 631–641 (1970).

Article  CAS  PubMed  Google Scholar 

Brenner, B. M., Goldszer, R. C. & Hostetter, T. H. Glomerular response to renal injury. Contrib. Nephrol. 33, 48–66 (1982).

Article  CAS  PubMed  Google Scholar 

Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basile, D. P. et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J. Am. Soc. Nephrol. 27, 687–697 (2016).

Article  CAS  PubMed  Google Scholar 

Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Compr. Physiol. 2, 1303–1353 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Harris, R. C., Seifter, J. L. & Brenner, B. M. Adaptation of Na+-H+ exchange in renal microvillus membrane vesicles. Role of dietary protein and uninephrectomy. J. Clin. Invest. 74, 1979–1987 (1984).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H. et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat. Genet. 54, 950–962 (2022).

Article  CAS  PubMed  Google Scholar 

Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russo, L. M. et al. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J. Am. Soc. Nephrol. 20, 489–494 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Haymann, J. P. et al. Characterization and localization of the neonatal Fc receptor in adult human kidney. J. Am. Soc. Nephrol. 11, 632–639 (2000).

Article  CAS  PubMed  Google Scholar 

Nielsen, R., Christensen, E. I. & Birn, H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 89, 58–67 (2016).

Article  CAS  PubMed  Google Scholar 

Park, C. H. & Maack, T. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J. Clin. Invest. 73, 767–777 (1984).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gudehithlu, K. P., Pegoraro, A. A., Dunea, G., Arruda, J. A. & Singh, A. K. Degradation of albumin by the renal proximal tubule cells and the subsequent fate of its fragments. Kidney Int. 65, 2113–2122 (2004).

Article  CAS  PubMed  Google Scholar 

Molitoris, B. A. & Wagner, M. C. Is albumin toxic to the kidney: it depends? Clin. J. Am. Soc. Nephrol. 18, 1222–1224 (2023).

PubMed  PubMed Central  Google Scholar 

Bedin, M. et al. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J. Clin. Invest. 130, 335–344 (2020).

Article  CAS  PubMed  Google Scholar 

Molitoris, B. A., Sandoval, R. M., Yadav, S. P. S. & Wagner, M. C. Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol. Rev. 102, 1625–1667 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weyer, K. et al. Abolishment of proximal tubule albumin endocytosis does not affect plasma albumin during nephrotic syndrome in mice. Kidney Int. 93, 335–342 (2018).

Article  CAS  PubMed  Google Scholar 

Birn, H., Nielsen, R. & Weyer, K. Tubular albumin uptake: is there evidence for a quantitatively important, receptor-independent mechanism? Kidney Int. 104, 1069–1073 (2023).

Article  CAS  PubMed  Google Scholar 

Kantarci, S. et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat. Genet. 39, 957–959 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charlton, J. R. et al. Beyond the tubule: pathological variants of LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 319, F988–F999 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faivre, A. et al. Spatiotemporal landscape of kidney tubular responses to glomerular proteinuria. J. Am. Soc. Nephrol. 35, 854–869 (2024).

Article  PubMed  Google Scholar 

Langelueddecke, C. et al. Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J. Biol. Chem. 287, 159–169 (2012).

Article  CAS  PubMed  Google Scholar 

Dizin, E. et al. Albuminuria induces a proinflammatory and profibrotic response in cortical collecting ducts via the 24p3 receptor. Am. J. Physiol. Renal Physiol. 305, F1053–F1063 (2013).

Article  CAS  PubMed  Google Scholar 

Hinrichs, G. R. et al. Urokinase-type plasminogen activator contributes to amiloride-sensitive sodium retention in nephrotic range glomerular proteinuria in mice. Acta Physiol. 227, e13362 (2019).

Article  CAS  Google Scholar 

Svenningsen, P. et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J. Am. Soc. Nephrol. 20, 299–310 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohnert, B. N. et al. Urokinase-type plasminogen activator (uPA) is not essential for epithelial sodium channel (ENaC)-mediated sodium retention in experimental nephrotic syndrome. Acta Physiol. 227, e13286 (2019).

Article  CAS  Google Scholar 

Staehr, M. et al. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am. J. Physiol. Renal Physiol. 309, F235–F241 (2015).

Article  CAS  PubMed  Google Scholar 

Xiao, M. et al. Plasminogen deficiency does not prevent sodium retention in a genetic mouse model of experimental nephrotic syndrome. Acta Physiol. 231, e13512 (2021).

Article  CAS  Google Scholar 

Zoja, C., Benigni, A. & Remuzzi, G. Cellular responses to protein overload: key event in renal disease progression. Curr. Opin. Nephrol. Hypertens. 13, 31–37 (2004).

Article  CAS  PubMed  Google Scholar 

Lidberg, K. A. et al. Serum protein exposure activates a core regulatory program driving human proximal tubule injury. J. Am. Soc. Nephrol. 33, 949–965 (2022).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif