Prognostic value of myeloid-derived suppressor-like cells in acute myeloid leukemia: insights from immunophenotyping and clinical correlations

Khwaja A, Bjorkholm M, Gale RE, Levine RL, Jordan CT, Ehninger G, Bloomfield CD, Estey E, Burnett A, Cornelissen JJ, Scheinberg DA, Bouscary D, Linch DC. Acute myeloid leukaemia. Nat Rev Dis Primers. 2022;2:16010. https://doi.org/10.1038/nrdp.2016.10.

Article  Google Scholar 

Rowe JM. The “7+3” regimen in acute myeloid leukemia. Haematologica. 2022;107:3. https://doi.org/10.3324/haematol.2021.280161.

Article  PubMed  PubMed Central  Google Scholar 

Büchner T, Schlenk RF, Schaich M, Döhner K, Krahl R, Krauter J, Heil G, Krug U, Sauerland MC, Heinecke A, Späth D, Kramer M, Scholl S, Berdel WE, Hiddemann W, Hoelzer D, Hehlmann R, Hasford J, Hoffmann VS, Döhner H, Pfirrmann M. Acute myeloid leukemia (AML): different treatment strategies versus a common standard arm–combined prospective analysis by the German AML Intergroup. J Clin Oncol. 2012;30:3604–10. https://doi.org/10.1200/JCO.2012.42.2907.

Article  CAS  PubMed  Google Scholar 

Thol F, Ganser A. Treatment of relapsed acute myeloid leukemia. Cur Treat Options Oncol. 2020;21:66. https://doi.org/10.1007/s11864-020-00765-5.

Article  Google Scholar 

Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest. 2020;130:1552–64. https://doi.org/10.1172/JCI129204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol. 2020;188:147–58. https://doi.org/10.1111/bjh.16310.

Article  PubMed  Google Scholar 

Ai L, Mu S, Wang Y, Wang H, Cai L, Li W, Hu Y. Prognostic role of myeloid-derived suppressor cells in cancers: a systematic review and meta-analysis. BMC Cancer. 2018;18:1220. https://doi.org/10.1186/s12885-018-5086-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Umansky V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25. https://doi.org/10.1038/s41416-018-0333-1.

Article  CAS  PubMed  Google Scholar 

Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6:362. https://doi.org/10.1038/s41392-021-00670-9.

Article  PubMed  PubMed Central  Google Scholar 

Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity. Immunity. 2021;54:875–84. https://doi.org/10.1016/j.immuni.2021.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. https://doi.org/10.1038/ncomms12150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. Front Med. 2021;15:232–51. https://doi.org/10.1007/s11684-020-0797-2.

Article  PubMed  Google Scholar 

Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczechowska D, Zabaleta J, Sanchez MD, Dean MJ, Rodriguez PC, Ochoa AC. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology. 2017;6:e1344804. https://doi.org/10.1080/2162402X.2017.1344804.

Article  PubMed  PubMed Central  Google Scholar 

Condamine T, Dominguez GA, Youn J-I, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, Partlova S, Garfall A, Vogl DT, Xu X, Knight SC, Malietzis G, Lee GH, Eruslanov E, Albelda SM, Wang X, Gabrilovich DI. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1:aaf8943. https://doi.org/10.1126/sciimmunol.aaf8943.

Article  PubMed  PubMed Central  Google Scholar 

Lang S, Bruderek K, Kaspar C, Höing B, Kanaan O, Dominas N, Hussain T, Droege F, Eyth C, Hadaschik B, Brandau S. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res. 2018;24:4834–44. https://doi.org/10.1158/1078-0432.CCR-17-3726.

Article  CAS  PubMed  Google Scholar 

Perez C, Botta C, Zabaleta A, Puig N, Cedena M-T, Goicoechea I, Alameda D, San José-Eneriz E, Merino J, Rodríguez-Otero P, Maia C, Alignani D, Maiso P, Manrique I, Lara-Astiaso D, Vilas-Zornoza A, Sarvide S, Riillo C, Rossi M, Rosiñol L, Paiva B. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood. 2020;136:199–209. https://doi.org/10.1182/blood.2019004537.

Article  PubMed  Google Scholar 

Peterlin P, Debord C, Eveillard M, Garnier A, Le Bourgeois A, Guillaume T, Jullien M, Béné MC, Chevallier P. Peripheral levels of monocytic myeloid-derived suppressive cells before and after first induction predict relapse and survivals in AML patients. J Cell Mol Med. 2022;26:5486. https://doi.org/10.1111/jcmm.17576.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hyun SY, Na EJ, Jang JE, Chung H, Kim SJ, Kim JS, Kong JH, Shim KY, Lee JI, Min YH, Cheong J-W. Immunosuppressive role of CD11b+ CD33+ HLA-DR- myeloid-derived suppressor cells-like blast subpopulation in acute myeloid leukemia. Cancer Med. 2020;9:7007–17. https://doi.org/10.1002/cam4.3360.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien H-F, Wei AH, Bloomfield CD. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. https://doi.org/10.1182/blood-2016-08-733196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

National Comprehensive Cancer Network – Home. (n.d.). https://www.nccn.org/home. Accessed 30 Nov 2022.

Rego EM, Kim HT, Ruiz-Argüelles GJ, Undurraga MS, Uriarte M del R, Jacomo RH, Gutiérrez-Aguirre H, Melo RAM, Bittencourt R, Pasquini R, Pagnano K, Fagundes EM, Chauffaille M de L, Chiattone CS, Martinez L, Meillón LA, Gómez-Almaguer D, Kwaan HC, Garcés-Eisele J, Gallagher R, San MA. zImproving acute promyelocytic leukemia (APL) outcome in developing countries through networking, results of the international consortium on APL. Blood. 2013;121:1935–43. https://doi.org/10.1182/blood-2012-08-449918.

Article  CAS  PubMed  Google Scholar 

Creutzig U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N, Klingebiel T, Kremens B, Lehrnbecher T, von Neuhoff C, Ritter J, Sander A, Schrauder A, von Stackelberg A, Starý J, Reinhardt D. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from study AML-BFM 2004. Blood. 2013;122:37–43. https://doi.org/10.1182/blood-2013-02-484097.

Article  CAS  PubMed  Google Scholar 

Testi AM, Pession A, Diverio D, Grimwade D, Gibson B, de Azevedo AC, Moran L, Leverger G, Elitzur S, Hasle H, van der Werff J, ten Bosch O, Smith M. De, Rosa A, Piciocchi F. Lo, Coco R, Foà F, Locatelli G.J.L. Kaspers. Risk-adapted treatment of acute promyelocytic leukemia: results from the International consortium for childhood APL. Blood. 2018;132:405–12. https://doi.org/10.1182/blood-2018-03-836528.

Article  CAS  PubMed  Google Scholar 

Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89–94. https://doi.org/10.1182/blood.v97.1.89.

Article  CAS  PubMed  Google Scholar 

Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, Almeida J, Lhermitte L, Asnafi V, Mendonça A, de Tute R, Cullen M, Sedek L, Vidriales MB, Pérez JJ, te Marvelde JG, Mejstrikova E, Hrusak O, Szczepański T, van Dongen JJM. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708), EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. https://doi.org/10.1038/leu.2012.122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dongen JJM, Lhermitte L, Böttcher S, Almeida J, van der Velden VHJ, Flores-Montero J, Rawstron A, Asnafi V, Lécrevisse Q, Lucio P, Mejstrikova E, Szczepański T, Kalina T, de Tute R, Brüggemann M, Sedek L, Cullen M, Langerak AW, Mendonça A, Macintyre E. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708), EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–75. https://doi.org/10.1038/leu.2012.120.

Article 

留言 (0)

沒有登入
gif