Women health issue: machine learning ensemble techniques to diagnosis breast cancer

Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(07):783–91.

Article  Google Scholar 

Maurya AP, Brahmachari S. Current status of breast cancer management in India. Indian J Surg. 2021;83(Suppl 2):316–21.

Article  Google Scholar 

Ganggayah MD, Taib NA, Har YC, Lio P, Dhillon SK. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med Inf Decis Mak. 2019;19:1–17.

Google Scholar 

Mahto D, Yadav SC, Lalotra GS. (2022). Sentiment Prediction of Textual Data Using Hybrid ConvBidirectional-LSTM Model. Mobile Information Systems, 2022.

Dhahri H, Al Maghayreh E, Mahmood A, Elkilani W, Faisal Nagi M. (2019). Automated breast cancer diagnosis based on machine learning algorithms. Journal of healthcare engineering, 2019.

Krishnam NP, Ashraf MS, Rajagopal BR, Vats P, Chakravarthy DSK, Rafi SM. Analysis of current Trends, advances and challenges of Machine Learning (Ml) and knowledge extraction: from ml to explainable AI. Volume 58. Industry Qualifications The Institute of Administrative Management UK; 2022. pp. 54–62.

Chaurasia V, Pal S, Tiwari BB. Prediction of benign and malignant breast cancer using data mining techniques. J Algorithms Comput Technol. 2018;12(2):119–26.

Article  Google Scholar 

Banu AB, Subramanian PT. Comparison of Bayes classifiers for breast cancer classification. Asian Pac J cancer Prevention: APJCP. 2018;19(10):2917.

Google Scholar 

Sakri SB, Rashid NBA, Zain ZM. Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access. 2018;6:29637–47.

Article  Google Scholar 

Yue W, Wang Z, Chen H, Payne A, Liu X. Machine learning with applications in breast cancer diagnosis and prognosis. Designs. 2018;2(2):13.

Article  Google Scholar 

Juneja K, Rana C. An improved weighted decision tree approach for breast cancer prediction. Int J Inform Technol. 2020;12(3):797–804.

Google Scholar 

Azar AT, El-Metwally SM. Decision tree classifiers for automated medical diagnosis. Neural Comput Appl. 2013;23:2387–403.

Article  Google Scholar 

Senapati MR, Panda G, Dash PK. Hybrid approach using KPSO and RLS for RBFNN design for breast cancer detection. Neural Comput Appl. 2014;24:745–53.

Article  Google Scholar 

Jhajharia S, Verma S, Kumar R. (2016, August). A cross-platform evaluation of various decision tree algorithms for prognostic analysis of breast cancer data. In 2016 International Conference on Inventive Computation Technologies (ICICT) (Vol. 3, pp. 1–7). IEEE.

Hasan MK, Islam MM, Hashem MMA. (2016, May). Mathematical model development to detect breast cancer using multigene genetic programming. In 2016 5th international conference on informatics, electronics and vision (ICIEV) (pp. 574–579). IEEE.

Azar AT, El-Said SA. Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl. 2014;24:1163–77.

Article  Google Scholar 

Chaurasia V, Pandey MK, Pal S. Chronic kidney disease: a prediction and comparison of ensemble and basic classifiers performance. Human-Intelligent Syst Integr. 2022;4(1–2):1–10.

Google Scholar 

Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ. A systematic review on supervised and unsupervised machine learning algorithms for data science. Supervised and unsupervised learning for data science; 2020. pp. 3–21.

Chaurasia V, Chaurasia A. Novel method of characterization of Heart Disease Prediction using sequential feature selection-based ensemble technique. Biomedical Materials & Devices; 2023. pp. 1–10.

Obulesu O, Mahendra M, ThrilokReddy M. (2018, July). Machine learning techniques and tools: A survey. In 2018 international conference on inventive research in computing applications (ICIRCA) (pp. 605–611). IEEE.

Kumar P, Hati AS. Review on machine learning algorithm based fault detection in induction motors. Arch Comput Methods Eng. 2021;28:1929–40.

Article  Google Scholar 

Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, Hamprecht FA. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics. 2009;10:1–16.

Article  Google Scholar 

Lalwani P, Mishra MK, Chadha JS, Sethi P. Customer churn prediction system: a machine learning approach. Computing; 2022. pp. 1–24.

Haripriya L, Jabbar MA. (2018, March). Role of machine learning in intrusion detection system. In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 925–929). IEEE.

Mangla M, Shinde SK, Mehta V, Sharma N, Mohanty SN, editors. Handbook of Research on Machine Learning: foundations and applications. CRC; 2022.

Ji X, Yang B, Tang Q. Acoustic seabed classification based on multibeam echosounder backscatter data using the PSO-BP-AdaBoost algorithm: a case study from Jiaozhou Bay, China. IEEE J Oceanic Eng. 2020;46(2):509–19.

Article  Google Scholar 

Breast Cancer Wisconsin Data Set. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

留言 (0)

沒有登入
gif