Cytochrome P450-derived Epoxyeicosatrienoic Acid, the Regulation of Cardiovascular-related Diseases, and the Implication for Pulmonary Hypertension

Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317.

Article  PubMed  Google Scholar 

McLaughlin VV, Shah SJ, Souza R, Humbert M. Management of pulmonary arterial hypertension. J Am Coll Cardiol. 2015;65(18):1976–97. https://doi.org/10.1016/j.jacc.2015.03.540.

Article  PubMed  Google Scholar 

Humbert M, Lau EM, Montani D, et al. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation. 2014;130(24):2189–208. https://doi.org/10.1161/CIRCULATIONAHA.114.006974.

Article  PubMed  Google Scholar 

Ryan JJ, Archer SL. Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation. 2015;131(19):1691–702. https://doi.org/10.1161/CIRCULATIONAHA.114.006979.

Article  PubMed  PubMed Central  Google Scholar 

Cracowski JL, Chabot F, Labarere J, et al. Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension. Eur Respiratory J. 2014;43(3):915–7. https://doi.org/10.1183/09031936.00151313.

Article  CAS  Google Scholar 

Soon E, Holmes AM, Treacy CM, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7. https://doi.org/10.1161/CIRCULATIONAHA.109.933762.

Article  PubMed  CAS  Google Scholar 

He Y-Y, Yan Y, Jiang X, et al. Spermine promotes pulmonary vascular remodelling and its synthase is a therapeutic target for pulmonary arterial hypertension. Eur Respiratory J. 2020;56(5). https://doi.org/10.1183/13993003.00522-2020.

Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ (Clinical research ed). 2018;360:j5492. https://doi.org/10.1136/bmj.j5492.

Article  PubMed  Google Scholar 

McReynolds C, Hammock B, Morisseau C. Regulatory lipid vicinal diols counteract the biological activity of epoxy fatty acids and can act as biomarkers and mechanisms for disease progression. Pharmacol Ther. 2023;248:108454. https://doi.org/10.1016/j.pharmthera.2023.108454.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat. 2020;147:106385. https://doi.org/10.1016/j.prostaglandins.2019.106385.

Article  PubMed  CAS  Google Scholar 

McGiff JC. Cytochrome P-450 metabolism of arachidonic acid. Annu Rev Pharmacol Toxicol. 1991;31:339–69. https://doi.org/10.1146/annurev.pa.31.040191.002011.

Article  PubMed  CAS  Google Scholar 

Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther. 2017;179:47–83. https://doi.org/10.1016/j.pharmthera.2017.05.005.

Article  PubMed  CAS  Google Scholar 

Morisseau C, Inceoglu B, Schmelzer K, et al. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res. 2010;51(12):3481–90. https://doi.org/10.1194/jlr.M006007.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fang X, Weintraub NL, McCaw RB, et al. Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. Am J Physiol Heart Circ Physiol. 2004;287(6):H2412–20. https://doi.org/10.1152/ajpheart.00527.2004.

Article  PubMed  CAS  Google Scholar 

Panigrahy D, Greene ER, Pozzi A, Wang DW, Zeldin DC. EET signaling in cancer. Cancer Metastasis Rev. 2011;30(3–4):525–40. https://doi.org/10.1007/s10555-011-9315-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bièche I, Narjoz C, Asselah T, et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics. 2007;17(9):731–42. https://doi.org/10.1097/FPC.0b013e32810f2e58.

Article  PubMed  CAS  Google Scholar 

Konkel A, Schunck W-H. Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochem Biophys Acta. 2011;1814(1):210–22. https://doi.org/10.1016/j.bbapap.2010.09.009.

Article  PubMed  CAS  Google Scholar 

McGiff JC, Carroll MA. Cytochrome P-450-related arachidonic acid metabolites. Am Rev Respir Dis. 1987;136(2):488–91. https://doi.org/10.1164/ajrccm/136.2.488.

Article  PubMed  CAS  Google Scholar 

VanRollins M, Kaduce TL, Knapp HR, Spector AA. 14,15-Epoxyeicosatrienoic acid metabolism in endothelial cells. J Lipid Res. 1993;34(11):1931–42.

Article  PubMed  CAS  Google Scholar 

Fang X, VanRollins M, Kaduce TL, Spector AA. Epoxyeicosatrienoic acid metabolism in arterial smooth muscle cells. J Lipid Res. 1995;36(6):1236–46.

Article  PubMed  CAS  Google Scholar 

Fang X, Kaduce TL, Weintraub NL, Spector AA. Cytochrome P450 metabolites of arachidonic acid: rapid incorporation and hydration of 14,15-epoxyeicosatrienoic acid in arterial smooth muscle cells. Prostaglandins Leukot Essent Fatty Acids. 1997;57(4–5):367–71.

Article  PubMed  CAS  Google Scholar 

VanRollins M, Kaduce TL, Fang X, Knapp HR, Spector AA. Arachidonic acid diols produced by cytochrome P-450 monooxygenases are incorporated into phospholipids of vascular endothelial cells. J Biol Chem. 1996;271(24):14001–9.

Article  PubMed  CAS  Google Scholar 

Deng Y, Edin ML, Theken KN, et al. Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. FASEB J. 2011;25(2):703–13. https://doi.org/10.1096/fj.10-171488.

Article  CAS  Google Scholar 

Schmelzer KR, Kubala L, Newman JW, et al. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci USA. 2005;102(28):9772–7. https://doi.org/10.1073/pnas.0503279102.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ding Y, Tu P, Chen Y, et al. CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia-reperfusion injury in vivo and in vitro. Respir Res. 2021;22(1):291. https://doi.org/10.1186/s12931-021-01891-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Node K, Huo Y, Ruan X, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999;285(5431):1276–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu W, Wang B, Ding H, Wang DW, Zeng H. A potential therapeutic effect of CYP2C8 overexpression on anti-TNF-α activity. Int J Mol Med. 2014;34(3):725–32. https://doi.org/10.3892/ijmm.2014.1844.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dai M, Wu L, He Z, et al. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction. J Cell Physiol. 2015;230(9):2108–19. https://doi.org/10.1002/jcp.24939.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abdalla HB, Alvarez C, Wu Y-C, e

留言 (0)

沒有登入
gif