Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197–210. https://doi.org/10.1016/S0140-6736(16)30677-8.
Jennings RB. Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res. 2013;113(4):428–38. https://doi.org/10.1161/CIRCRESAHA.113.300987.
Article PubMed CAS Google Scholar
Piper HM, García-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38(2):291–300.
Article PubMed CAS Google Scholar
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1). https://doi.org/10.1172/JCI62874.
Zweier JL, Talukder MAH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70(2):181–90.
Article PubMed CAS Google Scholar
Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 2017;38(11):774–84. https://doi.org/10.1093/eurheartj/ehw224.
Article PubMed CAS Google Scholar
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1). https://doi.org/10.1161/CIRCRESAHA.116.303577.
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14(3):133–44. https://doi.org/10.1038/nrcardio.2016.185.
Article PubMed CAS Google Scholar
Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117–29. https://doi.org/10.1038/nri3800.
Article PubMed PubMed Central CAS Google Scholar
Marchant DJ, Boyd JH, Lin DC, et al. Inflammation in myocardial diseases. Circ Res. 2012;110(1):126–44. https://doi.org/10.1161/CIRCRESAHA.111.243170.
Article PubMed CAS Google Scholar
Liu Y, Xu J, Wu M, Kang L, Xu B. The effector cells and cellular mediators of immune system involved in cardiac inflammation and fibrosis after myocardial infarction. J Cell Physiol. 2020;235(12):8996–9004. https://doi.org/10.1002/jcp.29732.
Article PubMed CAS Google Scholar
Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24–35. https://doi.org/10.1016/j.yjmcc.2013.04.023.
Article PubMed CAS Google Scholar
Xiao Z, Wei X, Li M, et al. Myeloid-specific deletion of Capns1 attenuates myocardial infarction injury via restoring mitochondrial function and inhibiting inflammasome activation. J Mol Cell Cardiol. 2023;183:54–66. https://doi.org/10.1016/j.yjmcc.2023.08.006.
Article PubMed CAS Google Scholar
Nasir NN, Sekar M, Fuloria S et al. Kirenol: a potential natural lead molecule for a new drug design, development, and therapy for inflammation. Molecules. 2022;27(3). https://doi.org/10.3390/molecules27030734.
Hu W, Mao C, Sheng W. The protective effect of kirenol in osteoarthritis: an in vitro and in vivo study. J Orthop Surg Res. 2022;17(1):195. https://doi.org/10.1186/s13018-022-03063-y.
Article PubMed PubMed Central Google Scholar
Wu B, Huang X-Y, Li L, et al. Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model. J Cell Mol Med. 2019;23(11):7651–63. https://doi.org/10.1111/jcmm.14638.
Article PubMed PubMed Central CAS Google Scholar
Li J, Zhang J, Yang M, et al. Kirenol alleviates diabetic nephropathy via regulating TGF-β/Smads and the NF-κB signal pathway. Pharm Biol. 2022;60(1):1690–700. https://doi.org/10.1080/13880209.2022.2112239.
Article PubMed PubMed Central CAS Google Scholar
Xiao J, Shen X, Kou R, et al. Kirenol inhibits inflammation challenged by lipopolysaccharide through the AMPK-mTOR-ULK1 autophagy pathway. Int Immunopharmacol. 2023;116:109734. https://doi.org/10.1016/j.intimp.2023.109734.
Article PubMed CAS Google Scholar
Sun X, Chen H, Gao R, et al. Intravenous transplantation of an ischemic-specific peptide-TPP-mitochondrial compound alleviates myocardial ischemic reperfusion injury. ACS Nano. 2023;17(2):896–909. https://doi.org/10.1021/acsnano.2c05286.
Article PubMed PubMed Central CAS Google Scholar
Wang Y, Chen Z, Li Y, et al. Low density lipoprotein receptor related protein 6 (LRP6) protects heart against oxidative stress by the crosstalk of HSF1 and GSK3β. Redox Biol. 2020;37:101699. https://doi.org/10.1016/j.redox.2020.101699.
Article PubMed PubMed Central CAS Google Scholar
Chen X, Hao Y, Liu Y et al. NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2023;10(32):e2302705. https://doi.org/10.1002/advs.202302705.
Zhang J, Liu L, Dong Z, et al. An ischemic area-targeting, peroxynitrite-responsive, biomimetic carbon monoxide nanogenerator for preventing myocardial ischemia-reperfusion injury. Bioact Mater. 2023;28:480–94. https://doi.org/10.1016/j.bioactmat.2023.05.017.
Article PubMed PubMed Central CAS Google Scholar
Ackers-Johnson M, Li PY, Holmes AP, et al. A simplified, langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res. 2016;119(8):909–20. https://doi.org/10.1161/circresaha.116.309202.
Article PubMed PubMed Central CAS Google Scholar
Trouplin V, Boucherit N, Gorvel L, et al. Bone marrow-derived macrophage production. J Visual Exp: JoVE. 2013;81:e50966. https://doi.org/10.3791/50966.
Wang Z-M, Zhu S-G, Wu Z-W, et al. Kirenol upregulates nuclear annexin-1 which interacts with NF-κB to attenuate synovial inflammation of collagen-induced arthritis in rats. J Ethnopharmacol. 2011;137(1):774–82. https://doi.org/10.1016/j.jep.2011.06.037.
Article PubMed CAS Google Scholar
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808. https://doi.org/10.1038/nm.2399.
Article PubMed PubMed Central CAS Google Scholar
Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773–89. https://doi.org/10.1038/s41569-020-0403-y.
Tang J, Shen Y, Chen G, et al. Activation of E-prostanoid 3 receptor in macrophages facilitates cardiac healing after myocardial infarction. Nat Commun. 2017;8:14656. https://doi.org/10.1038/ncomms14656.
Article PubMed PubMed Central Google Scholar
Cao Y, Xu Y, Auchoybur ML et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123. https://doi.org/10.1016/j.yjmcc.2018.08.021.
Chang X, Zhou S, Liu J, et al. Zishen Tongyang Huoxue decoction (TYHX) alleviates sinoatrial node cell ischemia/reperfusion injury by directing mitochondrial quality control via the VDAC1-β-tubulin signaling axis. J Ethnopharmacol. 2024;320:117371. https://doi.org/10.1016/j.jep.2023.117371.
Article PubMed CAS Google Scholar
Chang X, Li Y, Liu J, et al. ß-tubulin contributes to Tongyang Huoxue decoction-induced protection against hypoxia/reoxygenation-induced injury of sinoatrial node cells through SIRT1-mediated regulation of mitochondrial quality surveillance. Phytomedicine: Int J Phytother Phytopharmacol. 2023;108:154502. https://doi.org/10.1016/j.phymed.2022.154502.
Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406. https://doi.org/10.1016/j.it.2017.03.001.
留言 (0)