Changes in Cerebral Hemodynamics During Pediatric Cardiac Surgery with Cardiopulmonary Bypass for Congenital Heart Disease

Jooste EH, Machovec KA, Greeley WJ (2020) Anesthesia for pediatric cardiac surgery. In: Gropper MA (ed) Miller’s Anesthesia. Elsevier, Philadelphia, pp 2459–2512

Google Scholar 

Finucane E, Jooste E, Machovec KA (2020) Neuromonitoring modalities in pediatric cardiac anesthesia: a review of the literature. J Cardiothorac Vasc Anesth 34:3420–3428

Article  PubMed  Google Scholar 

Milne B, Gilbey T, Gautel L, Kunst G (2022) Neuromonitoring and neurocognitive outcomes in cardiac surgery: a narrative review. J Cardiothorac Vasc Anesth 36:2098–2113

Article  PubMed  Google Scholar 

Polito A, Ricci Z, Di Chiara L, Giorni C, Iacoella C, Sanders SP, Picardo S (2006) Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler–a systematic review of the literature. Cardiovasc Ultrasound 4:47

Article  PubMed  PubMed Central  Google Scholar 

Takeda Y, Yamamoto M, Hoshino K, Ito YM, Kato N, Wakasa S, Morimoto Y (2023) Changes in cerebral hemodynamics during Systemic pulmonary shunt and pulmonary artery banding in infants with congenital heart disease. Pediatr Cardiol 44:695–701

Article  PubMed  Google Scholar 

Grzyb A, Szymkiewicz-Dangel J (2023) Cerebroplacental hemodynamics in fetuses with transposition of the great arteries and usefulness in predicting neonatal condition. Ultrasound Obstet Gynecol 62:414–421

Article  CAS  PubMed  Google Scholar 

Kaltman JR, Di H, Tian Z, Rychik J (2005) Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 25:32–36

Article  CAS  PubMed  Google Scholar 

Man T, He Y, Zhao Y, Sun L, Liu X, Ge S (2017) Cerebrovascular hemodynamics in fetuses with congenital heart disease. Echocardiography 34:1867–1871

Article  PubMed  Google Scholar 

Williams IA, Fifer C, Jaeggi E, Levine JC, Michelfelder EC, Szwast AL (2013) The association of fetal cerebrovascular resistance with early neurodevelopment in single ventricle congenital heart disease. Am Heart J 165:544-550.e541

Article  PubMed  PubMed Central  Google Scholar 

Wójtowicz A, Ochoda-Mazur A, Mroczek T, Huras H, Włoch A (2022) Near-term cerebroplacental doppler, heart morphology, and neonatal biometry in hypoplastic left heart syndrome. J Ultrasound Med 41:2087–2096

Article  PubMed  Google Scholar 

Abdul-Khaliq H, Uhlig R, Böttcher W, Ewert P, Alexi-Meskishvili V, Lange PE (2002) Factors influencing the change in cerebral hemodynamics in pediatric patients during and after corrective cardiac surgery of congenital heart diseases by means of full-flow cardiopulmonary bypass. Perfusion 17:179–185

Article  PubMed  Google Scholar 

Sun L, Zhang K, Chen H, Ji W, Huang Y, Zhang M, Zheng J (2022) Age-related changes in cerebral hemodynamics in children undergoing congenital cardiac surgery: a prospective observational study. J Cardiothorac Vasc Anesth 36:1617–1624

Article  CAS  PubMed  Google Scholar 

Saito J, Takekawa D, Kawaguchi J, Suganuma T, Konno M, Noguchi S, Tokita T, Hashiba E, Hirota K (2019) Preoperative cerebral and renal oxygen saturation and clinical outcomes in pediatric patients with congenital heart disease. J Clin Monit Comput 33:1015–1022

Article  PubMed  Google Scholar 

Yamamoto M, Toki T, Kubo Y, Hoshino K, Morimoto Y (2022) Age Difference of the relationship between cerebral oxygen saturation and physiological parameters in pediatric cardiac surgery with cardiopulmonary bypass: analysis using the random-effects model. Pediatr Cardiol 43:1606–1614

Article  PubMed  Google Scholar 

Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458

Article  CAS  PubMed  Google Scholar 

Wang W, Bai SY, Zhang HB, Bai J, Zhang SJ, Zhu DM (2010) Pulsatile flow improves cerebral blood flow in pediatric cardiopulmonary bypass. Artif Organs 34:874–878

Article  PubMed  Google Scholar 

Patel PM, Drummond JC, Lemkuil BP (2020) Cerebral Physiology and the Effets of Anesthetic Drugs. In: Gropper MA (ed) Miller’s Anesthesia. Elsevier, Philadelphia, pp 294–332

Google Scholar 

Kubo Y, Itosu Y, Kubo T, Saito H, Okada K, Ito YM, Morimoto Y (2024) Cerebral oxygenation saturation in childhood: difference by age and comparison of two cerebral oximetry algorithms. J Clin Monit Comput 38:639–648

Article  PubMed  Google Scholar 

Zaleski KL, Kussman BD (2020) Near-infrared spectroscopy in pediatric congenital heart disease. J Cardiothorac Vasc Anesth 34:489–500

Article  CAS  PubMed  Google Scholar 

Ueda T, Mizushige K, Yukiiri K, Nishiyama Y, Kohno M (2004) The cerebrovascular dilatation effects of olprinone, a phosphodiesterase III inhibitor, in comparison with acetazolamide–a pilot study. Clin Neurol Neurosurg 106:284–288

Article  PubMed  Google Scholar 

Mazzon E, Esposito E, Di Paola R, Impellizzeri D, Bramanti P, Cuzzocrea S (2011) Olprinone, a specific phosphodiesterase (PDE)-III inhibitor, reduces the development of multiple organ dysfunction syndrome in mice. Pharmacol Res 64:68–79

Article  CAS  PubMed  Google Scholar 

Ueda T, Mizushige K (2006) The effects of olprinone, a phosphodiesterase 3 inhibitor, on systemic and cerebral circulation. Curr Vasc Pharmacol 4:1–7

Article  CAS  PubMed  Google Scholar 

Cheng HH, Wypij D, Laussen PC, Bellinger DC, Stopp CD, Soul JS, Newburger JW, Kussman BD (2014) Cerebral blood flow velocity and neurodevelopmental outcome in infants undergoing surgery for congenital heart disease. Ann Thorac Surg 98:125–132

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif