The ‘Treg paradox’ in inflammatory arthritis

Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

Article  PubMed  Google Scholar 

Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

Article  PubMed  Google Scholar 

Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–81 (2000).

Article  PubMed  PubMed Central  Google Scholar 

Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

Article  PubMed  Google Scholar 

Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

Article  PubMed  Google Scholar 

Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

Article  PubMed  Google Scholar 

Levescot, A. et al. IL-1β-driven osteoclastogenic Tregs accelerate bone erosion in arthritis. J. Clin. Invest. 131, e141008 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

Article  PubMed  Google Scholar 

Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

Article  PubMed  Google Scholar 

Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

Article  PubMed  Google Scholar 

Georgiev, P., Charbonnier, L. M. & Chatila, T. A. Regulatory T cells: the many faces of Foxp3. J. Clin. Immunol. 39, 623–640 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

Article  PubMed  Google Scholar 

Abbas, A. K. et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 14, 307–308 (2013).

Article  PubMed  Google Scholar 

Shevach, E. M. & Thornton, A. M. tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259, 88–102 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Milpied, P. et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 39, 1466–1471 (2009).

Article  PubMed  Google Scholar 

Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

Article  PubMed  Google Scholar 

Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Morita, T. et al. The proportion of regulatory T cells in patients with rheumatoid arthritis: a meta-analysis. PLoS ONE 11, e0162306 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Go, E. et al. Peripheral blood from rheumatoid arthritis patients shows decreased Treg CD25 expression and reduced frequency of effector Treg subpopulation. Cells 10, 801 (2021).

Thornton, A. M. & Shevach, E. M. Helios: still behind the clouds. Immunology 158, 161–170 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Akimova, T., Beier, U. H., Wang, L., Levine, M. H. & Hancock, W. W. Helios expression is a marker of T cell activation and proliferation. PLoS ONE 6, e24226 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Hsu, P. et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J. Immunol. 195, 3665–3674 (2015).

Article  PubMed  Google Scholar 

Collison, L. W. et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 11, 1093–1101 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Akdis, C. A. & Blaser, K. Mechanisms of interleukin-10-mediated immune suppression. Immunology 103, 131–136 (2001).

Article  PubMed  PubMed Central  Google Scholar 

Konkel, J. E. et al. Transforming growth factor-β signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity 46, 660–674 (2017).

Article  PubMed  Google Scholar 

Wang, J., Zhao, X. & Wan, Y. Y. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell. Mol. Immunol. 20, 1002–1022 (2023).

Article  PubMed  PubMed Central  Google Scholar 

de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480–2488 (2004).

Article  PubMed  Google Scholar 

Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

Article  PubMed  Google Scholar 

Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Bopp, T. et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 204, 1303–1310 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Vaeth, M. et al. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc. Natl Acad. Sci. USA 108, 2480–2485 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates

留言 (0)

沒有登入
gif