Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 2016, 214: 103–119.
Article CAS PubMed PubMed Central Google Scholar
Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 2020, 31: 623-641.e8.
Article CAS PubMed PubMed Central Google Scholar
Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021, 31: 3098-3114.e7.
Article CAS PubMed PubMed Central Google Scholar
Cartoni R, Norsworthy MW, Bei F, Wang C, Li S, Zhang Y, et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 2016, 92: 1294–1307.
Article CAS PubMed PubMed Central Google Scholar
Han SM, Baig HS, Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron 2016, 92: 1308–1323.
Article CAS PubMed PubMed Central Google Scholar
Sheng ZH. Mitochondrial trafficking and anchoring in neurons: New insight and implications. J Cell Biol 2014, 204: 1087–1098.
Article CAS PubMed PubMed Central Google Scholar
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018, 19: 63–80.
Article CAS PubMed Google Scholar
Misgeld T, Schwarz TL. Mitostasis in neurons: Maintaining mitochondria in an extended cellular architecture. Neuron 2017, 96: 651–666.
Article CAS PubMed PubMed Central Google Scholar
Pilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 2006, 17: 2057–2068.
Article CAS PubMed PubMed Central Google Scholar
Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 1998, 93: 1147–1158.
Article CAS PubMed Google Scholar
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022, 110: 1899–1923.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 2013, 202: 351–364.
Article CAS PubMed PubMed Central Google Scholar
Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 2008, 132: 137–148.
Article CAS PubMed PubMed Central Google Scholar
Verreet T, Weaver CJ, Hino H, Hibi M, Poulain FE. Syntaphilin-mediated docking of mitochondria at the growth cone is dispensable for axon elongation in vivo. eNeuro 2019, 6: ENEURO.0026–ENEURO.0019.2019.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496: 498–503.
Article CAS PubMed PubMed Central Google Scholar
Bremer J, Marsden KC, Miller A, Granato M. The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Commun Biol 2019, 2: 195.
Article PubMed PubMed Central Google Scholar
Hecker A, Anger P, Braaker PN, Schulze W, Schuster S. High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish. Commun Biol 2020, 3: 307.
Article CAS PubMed PubMed Central Google Scholar
Korn H, Faber DS. The Mauthner cell half a century later: A neurobiological model for decision-making? Neuron 2005, 47: 13–28.
Article CAS PubMed Google Scholar
Sillar KT. Mauthner cells. Curr Biol 2009, 19: R353–R355.
Article CAS PubMed Google Scholar
Hu BB, Chen M, Huang RC, Huang YB, Xu Y, Yin W, et al. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp Neurol 2018, 300: 67–73.
Article CAS PubMed Google Scholar
Rodemer W, Hu J, Selzer ME, Shifman MI. Heterogeneity in the regenerative abilities of central nervous system axons within species: Why do some neurons regenerate better than others? Neural Regen Res 2020, 15: 996–1005.
Huang R, Xu Y, Chen M, Yang L, Wang X, Shen Y, et al. Visualizing the intracellular trafficking in zebrafish mauthner cells. Methods Mol Biol 2022, 2431: 351–364.
Article CAS PubMed Google Scholar
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008, 3: 59–69.
Article CAS PubMed Google Scholar
Cohen SM. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nat Methods 2009, 6: 873–874.
Article CAS PubMed Google Scholar
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4: 721–726.
Article CAS PubMed Google Scholar
Wang Z, Wang X, Shi L, Cai Y, Hu B. Wolfram syndrome 1b mutation suppresses Mauthner-cell axon regeneration via ER stress signal pathway. Acta Neuropathol Commun 2022, 10: 184.
Article CAS PubMed PubMed Central Google Scholar
Chen M, Huang RC, Yang LQ, Ren DL, Hu B. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J 2019, 33: 7721–7733.
Article CAS PubMed Google Scholar
Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005, 308: 833–838.
Article CAS PubMed Google Scholar
Plucińska G, Paquet D, Hruscha A, Godinho L, Haass C, Schmid B, et al. In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 2012, 32: 16203–16212.
Article PubMed PubMed Central Google Scholar
Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A 2015, 112: 10515–10520.
留言 (0)