Proteomics for forensic identification of saliva and vomit in a case of alleged rape

Sijen T, Harbison S. On the identification of body fluids and tissues: a crucial link in the investigation and solution of crime. Genes. 2021;12(11):1728.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Courts C. Forensic body fluid and tissue identification. In: Primorac D, Schanfield M, editors. Forensic DNA applications. Boca Raton, FL, USA: CRC Press; 2023. pp. 319–42.

Chapter  Google Scholar 

Boroumand M, Grassi VM, Castagnola F, De Giorgio F, D’Aloja E, Vetrugno G, Pascali VL, Vincenzoni F, Iavarone F, Faa G, Castagnola M. Estimation of postmortem interval using top-down HPLC–MS analysis of peptide fragments in vitreous humour: a pilot study. Int J Mass Spectrom. 2023;483:116952.

Article  CAS  Google Scholar 

Procopio N, Bonicelli A. From flesh to bones: multi-omics approaches in forensic science. Proteomics. 2024;24(12–13):e2200335.

Article  PubMed  Google Scholar 

Van Steendam K, De Ceuleneer M, Dhaenens M, Van Hoofstat D, Deforce D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int J Legal Med. 2013;127(2):287–98.

Article  PubMed  Google Scholar 

Dammeier S, Nahnsen S, Veit J, Wehner F, Ueffing M, Kohlbacher O. Mass spectrometry-based proteomics reveals organ-specific expression patterns to be used as forensic evidence. J Proteome Res. 2016;15:182–92.

Article  PubMed  CAS  Google Scholar 

Yang H, Zhou B, Deng H, Prinz M, Siegel D. Body fluid identification by mass spectrometry. Int J Legal Med. 2013;127(6):1065–77.

Article  PubMed  Google Scholar 

Illiano A, Arpino V, Pinto G, Berti A, Verdoliva V, Peluso G, Pucci P, Amoresano A. Multiple reaction monitoring tandem mass spectrometry approach for the identification of biological fluids at crime scene investigations. Anal Chem. 2018;90(9):5627–36.

Article  PubMed  CAS  Google Scholar 

McKiernan HE, Danielson PB, Brown CO, Signaevsky M, Westring CG, Legg KM. Developmental validation of a multiplex proteomic assay for the identification of forensically relevant biological fluids. Forensic Sci Int. 2021;326:110908.

Article  PubMed  CAS  Google Scholar 

Keane RE, Tidy RJ, Parker GJ, Gummer JP, Priddis C. Mass spectrometry-based proteomics: changing the impact of protein analysis in forensic science. WIREs Forensic Sci. 2024;6.e1516.

Parker GJ, McKiernan HE, Legg KM, Goecker ZC. Forensic proteomics. Forensic Sci Int Genet. 2021;54:102529.

Article  PubMed  CAS  Google Scholar 

Pieri M, Silvestre A, De Cicco M, Mamone G, Capasso E, Addeo F, Picariello G. Mass spectrometry-based proteomics for the forensic identification of vomit traces. J Proteomics. 2019;209:103524.

Article  PubMed  CAS  Google Scholar 

Kar AK, Chakraborty C, Uppal P. Introduction to vomitus and its forensic analysis. In: Puri A, Mahalakshmi N, Chauhan T, Mishra A, Bhatnagar P, editors. Fundamentals of forensic biology. Singapore: Springer Nature; 2024. pp. 177–81.

Chapter  Google Scholar 

Akutsu T, Saito H, Iwase H, Watanabe K, Takamura A, Sakurada K, Miyasaka S. The applicability of ELISA detection of gastric mucosa-expressing proteins for the identification of vomit. Int J Legal Med. 2017;131:359–64.

Article  PubMed  Google Scholar 

Duong VA, Park JM, Lim HJ, Lee H. Proteomics in forensic analysis: applications for human samples. Appl Sci. 2021;11(8):3393.

Article  CAS  Google Scholar 

Pieri M, Lombardi A, Basilicata P, Mamone G, Picariello G. Proteomics in forensic sciences: identification of the nature of the last meal at autopsy. J Proteome Res. 2018;17(7):2412–20.

Article  PubMed  CAS  Google Scholar 

Basilicata P, Giugliano P, Vacchiano G, Simonelli A, Guadagni R, Silvestre A, Pieri M. Forensic toxicological and medico-legal evaluation in a case of incongruous drug administration in terminal cancer patients. Toxics. 2021;9(12):356.

Article  PubMed  PubMed Central  Google Scholar 

De Cicco M, Mamone G, Di Stasio L, Ferranti P, Addeo F, Picariello G. Hidden “digestome”: current analytical approaches provide incomplete peptide inventories of food digests. J Agric Food Chem. 2019;67(27):7775–82.

Article  PubMed  Google Scholar 

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9.

Article  PubMed  CAS  Google Scholar 

Nicora C, Gritsenko M, Lipton A, Wahl KL, Burnum-Johnson KE. Proteomic sample preparation techniques: toward forensic proteomic applications. In: Merkley ED, editor. Applications in forensic proteomics: protein identification and profiling. Washington, DC, USA: American Chemical Society; 2019. pp. 29–46.

Chapter  Google Scholar 

Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol. 2007;52(12):1114–35.

Article  PubMed  CAS  Google Scholar 

Legg KM, Powell R, Reisdorph N, Reisdorph R, Danielson PB. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry. Electrophoresis. 2017;38:833–45.

Article  PubMed  CAS  Google Scholar 

Leach SA, Critchley P. Bacterial degradation of glycoprotein sugars in human saliva. Nature. 1966;209:506.

Article  PubMed  CAS  Google Scholar 

Piotrowski J, Czajkowski A, Murty VL, Slomiany A, Slomiany BL. Identification of human salivary protease activity toward mucin: differences with caries. Biochem Int. 1992;28(5):939–47.

PubMed  CAS  Google Scholar 

Kennedy S, Davis C, Abrams WR, Billings PC, Nagashunmugam T, Friedman H, Malamud D. Submandibular salivary proteases: lack of a role in anti-HIV activity. J Dent Res. 1998;77(7):1515–9.

Article  PubMed  CAS  Google Scholar 

Thomadaki K, Helmerhorst EJ, Tian N, Sun X, Siqueira WL, Walt DR, Oppenheim FG. Whole-saliva proteolysis and its impact on salivary diagnostics. J Dent Res. 2011;90(11):1325–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Feng Y, Li Q, Chen J, Yi P, Xu X, Fan Y, Cui B, Yu Y, Li X, Du Y, Chen Q. Salivary protease spectrum biomarkers of oral cancer. Int J Oral Sci. 2019;11(1):7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yamamoto K, Hiraishi M, Haneoka M, Fujinaka H, Yano Y. Protease inhibitor concentrations in the saliva of individuals experiencing oral dryness. BMC Oral Health. 2021;21(1):661.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Loo JA, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89(10):1016–23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brown CO, Westring CG, Danielson PB, Legg KM. Saliva identification in forensic samples by automated microextraction and intact mass analysis of statherin. J Forensic Sci. 2024;69(2):640–50.

Article  PubMed  Google Scholar 

Inzitari R, Cabras T, Rossetti DV, Fanali C, Vitali A, Pellegrini M, Paludetti G, Manni A, Giardina B, Messana I, Castagnola M. Detection in human saliva of different statherin and P-B fragments and derivatives. Proteomics. 2006;6(23):6370–9.

Article  PubMed  CAS  Google Scholar 

Yan W, Apweiler R, Balgley BM, Boontheung P, Bundy JL, Cargile BJ, Cole S, Fang X, Gonzalez-Begne M, Griffin TJ, Hagen F, Hu S, Wolinsky LE, Lee CS, Malamud D, Melvin JE, Menon R, Mueller M, Qiao R, Rhodus NL, Sevinsky JR, States D, Stephenson JL, Than S, Yates JR, Yu W, Xie H, Xie Y, Omenn GS, Loo JA, Wong DT. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin Appl. 2009;3(1):116–34.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thomas C, Giulivi C. Saliva protein profiling for subject identification and potential medical applications. Med Omics. 2021;3:100012.

留言 (0)

沒有登入
gif