Sijen T, Harbison S. On the identification of body fluids and tissues: a crucial link in the investigation and solution of crime. Genes. 2021;12(11):1728.
Article PubMed PubMed Central CAS Google Scholar
Courts C. Forensic body fluid and tissue identification. In: Primorac D, Schanfield M, editors. Forensic DNA applications. Boca Raton, FL, USA: CRC Press; 2023. pp. 319–42.
Boroumand M, Grassi VM, Castagnola F, De Giorgio F, D’Aloja E, Vetrugno G, Pascali VL, Vincenzoni F, Iavarone F, Faa G, Castagnola M. Estimation of postmortem interval using top-down HPLC–MS analysis of peptide fragments in vitreous humour: a pilot study. Int J Mass Spectrom. 2023;483:116952.
Procopio N, Bonicelli A. From flesh to bones: multi-omics approaches in forensic science. Proteomics. 2024;24(12–13):e2200335.
Van Steendam K, De Ceuleneer M, Dhaenens M, Van Hoofstat D, Deforce D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int J Legal Med. 2013;127(2):287–98.
Dammeier S, Nahnsen S, Veit J, Wehner F, Ueffing M, Kohlbacher O. Mass spectrometry-based proteomics reveals organ-specific expression patterns to be used as forensic evidence. J Proteome Res. 2016;15:182–92.
Article PubMed CAS Google Scholar
Yang H, Zhou B, Deng H, Prinz M, Siegel D. Body fluid identification by mass spectrometry. Int J Legal Med. 2013;127(6):1065–77.
Illiano A, Arpino V, Pinto G, Berti A, Verdoliva V, Peluso G, Pucci P, Amoresano A. Multiple reaction monitoring tandem mass spectrometry approach for the identification of biological fluids at crime scene investigations. Anal Chem. 2018;90(9):5627–36.
Article PubMed CAS Google Scholar
McKiernan HE, Danielson PB, Brown CO, Signaevsky M, Westring CG, Legg KM. Developmental validation of a multiplex proteomic assay for the identification of forensically relevant biological fluids. Forensic Sci Int. 2021;326:110908.
Article PubMed CAS Google Scholar
Keane RE, Tidy RJ, Parker GJ, Gummer JP, Priddis C. Mass spectrometry-based proteomics: changing the impact of protein analysis in forensic science. WIREs Forensic Sci. 2024;6.e1516.
Parker GJ, McKiernan HE, Legg KM, Goecker ZC. Forensic proteomics. Forensic Sci Int Genet. 2021;54:102529.
Article PubMed CAS Google Scholar
Pieri M, Silvestre A, De Cicco M, Mamone G, Capasso E, Addeo F, Picariello G. Mass spectrometry-based proteomics for the forensic identification of vomit traces. J Proteomics. 2019;209:103524.
Article PubMed CAS Google Scholar
Kar AK, Chakraborty C, Uppal P. Introduction to vomitus and its forensic analysis. In: Puri A, Mahalakshmi N, Chauhan T, Mishra A, Bhatnagar P, editors. Fundamentals of forensic biology. Singapore: Springer Nature; 2024. pp. 177–81.
Akutsu T, Saito H, Iwase H, Watanabe K, Takamura A, Sakurada K, Miyasaka S. The applicability of ELISA detection of gastric mucosa-expressing proteins for the identification of vomit. Int J Legal Med. 2017;131:359–64.
Duong VA, Park JM, Lim HJ, Lee H. Proteomics in forensic analysis: applications for human samples. Appl Sci. 2021;11(8):3393.
Pieri M, Lombardi A, Basilicata P, Mamone G, Picariello G. Proteomics in forensic sciences: identification of the nature of the last meal at autopsy. J Proteome Res. 2018;17(7):2412–20.
Article PubMed CAS Google Scholar
Basilicata P, Giugliano P, Vacchiano G, Simonelli A, Guadagni R, Silvestre A, Pieri M. Forensic toxicological and medico-legal evaluation in a case of incongruous drug administration in terminal cancer patients. Toxics. 2021;9(12):356.
Article PubMed PubMed Central Google Scholar
De Cicco M, Mamone G, Di Stasio L, Ferranti P, Addeo F, Picariello G. Hidden “digestome”: current analytical approaches provide incomplete peptide inventories of food digests. J Agric Food Chem. 2019;67(27):7775–82.
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9.
Article PubMed CAS Google Scholar
Nicora C, Gritsenko M, Lipton A, Wahl KL, Burnum-Johnson KE. Proteomic sample preparation techniques: toward forensic proteomic applications. In: Merkley ED, editor. Applications in forensic proteomics: protein identification and profiling. Washington, DC, USA: American Chemical Society; 2019. pp. 29–46.
Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol. 2007;52(12):1114–35.
Article PubMed CAS Google Scholar
Legg KM, Powell R, Reisdorph N, Reisdorph R, Danielson PB. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry. Electrophoresis. 2017;38:833–45.
Article PubMed CAS Google Scholar
Leach SA, Critchley P. Bacterial degradation of glycoprotein sugars in human saliva. Nature. 1966;209:506.
Article PubMed CAS Google Scholar
Piotrowski J, Czajkowski A, Murty VL, Slomiany A, Slomiany BL. Identification of human salivary protease activity toward mucin: differences with caries. Biochem Int. 1992;28(5):939–47.
Kennedy S, Davis C, Abrams WR, Billings PC, Nagashunmugam T, Friedman H, Malamud D. Submandibular salivary proteases: lack of a role in anti-HIV activity. J Dent Res. 1998;77(7):1515–9.
Article PubMed CAS Google Scholar
Thomadaki K, Helmerhorst EJ, Tian N, Sun X, Siqueira WL, Walt DR, Oppenheim FG. Whole-saliva proteolysis and its impact on salivary diagnostics. J Dent Res. 2011;90(11):1325–30.
Article PubMed PubMed Central CAS Google Scholar
Feng Y, Li Q, Chen J, Yi P, Xu X, Fan Y, Cui B, Yu Y, Li X, Du Y, Chen Q. Salivary protease spectrum biomarkers of oral cancer. Int J Oral Sci. 2019;11(1):7.
Article PubMed PubMed Central CAS Google Scholar
Yamamoto K, Hiraishi M, Haneoka M, Fujinaka H, Yano Y. Protease inhibitor concentrations in the saliva of individuals experiencing oral dryness. BMC Oral Health. 2021;21(1):661.
Article PubMed PubMed Central CAS Google Scholar
Loo JA, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89(10):1016–23.
Article PubMed PubMed Central CAS Google Scholar
Brown CO, Westring CG, Danielson PB, Legg KM. Saliva identification in forensic samples by automated microextraction and intact mass analysis of statherin. J Forensic Sci. 2024;69(2):640–50.
Inzitari R, Cabras T, Rossetti DV, Fanali C, Vitali A, Pellegrini M, Paludetti G, Manni A, Giardina B, Messana I, Castagnola M. Detection in human saliva of different statherin and P-B fragments and derivatives. Proteomics. 2006;6(23):6370–9.
Article PubMed CAS Google Scholar
Yan W, Apweiler R, Balgley BM, Boontheung P, Bundy JL, Cargile BJ, Cole S, Fang X, Gonzalez-Begne M, Griffin TJ, Hagen F, Hu S, Wolinsky LE, Lee CS, Malamud D, Melvin JE, Menon R, Mueller M, Qiao R, Rhodus NL, Sevinsky JR, States D, Stephenson JL, Than S, Yates JR, Yu W, Xie H, Xie Y, Omenn GS, Loo JA, Wong DT. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin Appl. 2009;3(1):116–34.
Article PubMed PubMed Central CAS Google Scholar
Thomas C, Giulivi C. Saliva protein profiling for subject identification and potential medical applications. Med Omics. 2021;3:100012.
留言 (0)