Eastlack SC, Cornett EM, Kaye AD. Kratom-pharmacology, clinical implications, and outlook: a comprehensive review. Pain Ther. 2020;9(1):55–69. https://doi.org/10.1007/s40122-020-00151-x.
Article PubMed PubMed Central Google Scholar
Farkas DJ, Inan S, Heydari LN, Johnson CT, Zhao P, Bradshaw HB, et al. Cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid mitragynine against neuropathic, but not inflammatory pain. Life Sci. 2023;328:121878. https://doi.org/10.1016/j.lfs.2023.121878.
Article PubMed PubMed Central CAS Google Scholar
Hiranita T, Obeng S, Sharma A, Wilkerson JL, McCurdy CR, McMahon LR. In vitro and in vivo pharmacology of kratom. Adv Pharmacol. 2022;93:35–76. https://doi.org/10.1016/bs.apha.2021.10.001.
Article PubMed CAS Google Scholar
Hassan Z, Muzaimi M, Navaratnam V, Yusoff NH, Suhaimi FW, Vadivelu R, et al. From Kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev. 2013;37(2):138–51. https://doi.org/10.1016/j.neubiorev.2012.11.012.
Article PubMed CAS Google Scholar
Kamble SH, Leon F, King TI, Berthold EC, Lopera-Londono C, Siva Rama Raju K, et al. metabolism of a kratom alkaloid metabolite in human plasma increases its opioid potency and efficacy. ACS Pharmacol Transl Sci. 2020;3(6):1063-8. https://doi.org/10.1021/acsptsci.0c00075.
Chakraborty S, Uprety R, Slocum ST, Irie T, Le Rouzic V, Li X, et al. Oxidative metabolism as a modulator of kratom’s biological actions. J Med Chem. 2021;64(22):16553–72. https://doi.org/10.1021/acs.jmedchem.1c01111.
Article PubMed PubMed Central CAS Google Scholar
Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology. 2018;134(Pt A):108–20. https://doi.org/10.1016/j.neuropharm.2017.08.026.
Article PubMed CAS Google Scholar
Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, et al. Antinociceptive effect of 7-hydroxymitragynine in mice: discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2004;74(17):2143–55. https://doi.org/10.1016/j.lfs.2003.09.054.
Article PubMed CAS Google Scholar
Ya K, Tangamornsuksan W, Scholfield CN, Methaneethorn J, Lohitnavy M. Pharmacokinetics of mitragynine, a major analgesic alkaloid in kratom (Mitragyna speciosa): a systematic review. Asian J Psychiatr. 2019;43:73–82. https://doi.org/10.1016/j.ajp.2019.05.016.
Yamamoto LT, Horie S, Takayama H, Aimi N, Sakai S, Yano S, et al. Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa. Gen Pharmacol. 1999;33(1):73–81. https://doi.org/10.1016/s0306-3623(98)00265-1.
Article PubMed CAS Google Scholar
Karunakaran T, Ngew KZ, Zailan AAD, Mian Jong VY, Abu Bakar MH. the chemical and pharmacological properties of mitragynine and its diastereomers: an insight review. Front Pharmacol. 2022;13:805986. https://doi.org/10.3389/fphar.2022.805986.
Article PubMed PubMed Central CAS Google Scholar
Kamble SH, Berthold EC, Kanumuri SRR, King TI, Kuntz MA, Leon F, et al. Metabolism of speciociliatine, an overlooked kratom alkaloid for its potential pharmacological effects. AAPS J. 2022;24(5):86. https://doi.org/10.1208/s12248-022-00736-8.
Article PubMed CAS Google Scholar
Leon F, Obeng S, Mottinelli M, Chen Y, King TI, Berthold EC, et al. Activity of Mitragyna speciosa (“kratom”) alkaloids at serotonin receptors. J Med Chem. 2021;64(18):13510–23. https://doi.org/10.1021/acs.jmedchem.1c00726.
Article PubMed PubMed Central CAS Google Scholar
Hartley C 2nd, Bulloch M, Penzak SR. Clinical pharmacology of the dietary supplement kratom (Mitragyna speciosa). J Clin Pharmacol. 2022;62(5):577–93. https://doi.org/10.1002/jcph.2001.
Article PubMed CAS Google Scholar
Grundmann O. Patterns of Kratom use and health impact in the US-Results from an online survey. Drug Alcohol Depend. 2017;176:63–70. https://doi.org/10.1016/j.drugalcdep.2017.03.007.
Grundmann O, Hendrickson RG, Greenberg MI. Kratom: history, pharmacology, current user trends, adverse health effects and potential benefits. Dis Mon. 2023;69(6):101442. https://doi.org/10.1016/j.disamonth.2022.101442.
Swogger MT, Smith KE, Garcia-Romeu A, Grundmann O, Veltri CA, Henningfield JE, et al. Understanding kratom use: a guide for healthcare providers. Front Pharmacol. 2022;13:801855. https://doi.org/10.3389/fphar.2022.801855.
Article PubMed PubMed Central CAS Google Scholar
Gorelick DA. Kratom: substance of abuse or therapeutic plant? Psychiatr Clin North Am. 2022;45(3):415–30. https://doi.org/10.1016/j.psc.2022.04.002.
Basiliere S, Bryand K, Kerrigan S. Identification of five Mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1080:11–9. https://doi.org/10.1016/j.jchromb.2018.02.010.
Article PubMed CAS Google Scholar
Citti C, Lagana A, Capriotti AL, Montone CM, Cannazza G. Kratom: the analytical challenge of an emerging herbal drug. J Chromatogr A. 2023;1703:464094. https://doi.org/10.1016/j.chroma.2023.464094.
Article PubMed CAS Google Scholar
de Moraes NV, Moretti RA, Furr EB 3rd, McCurdy CR, Lanchote VL. Determination of mitragynine in rat plasma by LC-MS/MS: application to pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(24):2593–7. https://doi.org/10.1016/j.jchromb.2009.06.023.
Article PubMed PubMed Central CAS Google Scholar
Hughs M, Kish-Trier E, O’Brien A, McMillin GA. Analysis of mitragynine and speciociliatine in umbilical cord by LC-MS-MS for detecting prenatal exposure to kratom. J Anal Toxicol. 2023;46(9):957–64. https://doi.org/10.1093/jat/bkac064.
Article PubMed CAS Google Scholar
Janchawee B, Keawpradub N, Chittrakarn S, Prasettho S, Wararatananurak P, Sawangjareon K. A high-performance liquid chromatographic method for determination of mitragynine in serum and its application to a pharmacokinetic study in rats. Biomed Chromatogr. 2007;21(2):176–83. https://doi.org/10.1002/bmc.731.
Article PubMed CAS Google Scholar
Le D, Goggin MM, Janis GC. Analysis of mitragynine and metabolites in human urine for detecting the use of the psychoactive plant kratom. J Anal Toxicol. 2012;36(9):616–25. https://doi.org/10.1093/jat/bks073.
Article PubMed CAS Google Scholar
Lo Faro AF, Di Trana A, La Maida N, Tagliabracci A, Giorgetti R, Busardo FP. Biomedical analysis of new psychoactive substances (NPS) of natural origin. J Pharm Biomed Anal. 2020;179:112945. https://doi.org/10.1016/j.jpba.2019.112945.
Article PubMed CAS Google Scholar
Meireles V, Rosado T, Barroso M, Soares S, Goncalves J, Luis A, et al. Mitragyna speciosa: clinical, toxicological aspects and analysis in biological and non-biological samples. Medicines (Basel). 2019;6(1):1–35. https://doi.org/10.3390/medicines6010035.
Neerman MF, Frost RE, Deking J. A drug fatality involving kratom. J Forensic Sci. 2013;58(Suppl 1):S278-9. https://doi.org/10.1111/1556-4029.12009.
Parthasarathy S, Ramanathan S, Ismail S, Adenan MI, Mansor SM, Murugaiyah V. Determination of mitragynine in plasma with solid-phase extraction and rapid HPLC-UV analysis, and its application to a pharmacokinetic study in rat. Anal Bioanal Chem. 2010;397(5):2023–30. https://doi.org/10.1007/s00216-010-3707-7.
留言 (0)