Vitiello A, Ferrara F, Boccellino M, Ponzo A, Cimmino C, Comberiati E, Zovi A, Clemente S, Sabbatucci M. Antifungal drug resistance: an emergent health threat. Biomedicines. 2023;11:1063. https://doi.org/10.3390/biomedicines11041063.
Article PubMed PubMed Central CAS Google Scholar
Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–92. https://doi.org/10.1016/s1473-3099(17)30316-x.
Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2011;125:S3–13. https://doi.org/10.1016/j.amjmed.2011.11.001.
Yu JS, Kim JH, Lee S, Jung K, Kim KH, Cho JY. Src/Syk-targeted anti-inflammatory actions of triterpenoidal saponins from gac (Momordica cochinchinensis) seeds. Am J Chin Med. 2017;45:459–73. https://doi.org/10.1142/s0192415x17500288.
Article PubMed CAS Google Scholar
Móricz ÁM, Fornal E, Jesionek W, Majer-Dziedzic B, Choma IM. Effect-directed isolation and identification of antibacterial Chelidonium majus L. alkaloids. Chromatographia. 2015;78:707–16. https://doi.org/10.1007/s10337-015-2870-6.
Olchowik-Grabarek E, Swiecicka I, Andreeva-Kovaleskaya Z, Solonin A, Bonarska-Kujawa D, Kleszczyńska H, Mavlyanov S, Zamaraeva M. Role of structural changes induced in biological membranes by hydrolysable tannins from sumac leaves (Rhus typhina L.) in their antihemolytic and antibacterial effects. J Membr Biol. 2014;247:533–40. https://doi.org/10.1007/s00232-014-9664-x.
Article PubMed CAS Google Scholar
Desta KT, Kim G-S, Hong GE, Kim Y-H, Lee WS, Lee SJ, Jin JS, Abd El-Aty AM, Shin H-C, Shim J-H, Shin SC. Dietary-flavonoid-rich flowers of Rumex nervosus Vahl: liquid chromatography with electrospray ionization tandem mass spectrometry profiling and in vitro anti-inflammatory effects. J Sep Science. 2015;38:3345–53. https://doi.org/10.1002/jssc.201500737.
Shu CJ, LiZ H, Shan CY, Nie W, Zhang WM, Ma SH (2020) Research on the application development of plant bacteriostasis in disinfectants. 147–152. https://doi.org/10.16054/j.cnki.cci.2020.z1.026.
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55. https://doi.org/10.1016/s0140-6736(21)02724-0.
Mose KF, Bygum A. Chinese herbal remedy found to contain steroids and antifungals. Lancet. 2019;393:446–446. https://doi.org/10.1016/s0140-6736(19)30116-3.
Baidu baike (2021) Infant with macrocephaly. https://baike.baidu.com/item/%E5%A4%A7%E5%A4%B4%E5%A8%83%E5%A8%83/50055406.
Lai C-C, Chen S-Y, Ko W-C, Hsueh P-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57: 106324. https://doi.org/10.1016/j.ijantimicag.2021.106324.
Article PubMed PubMed Central CAS Google Scholar
Knight GM, Glover RE, McQuaid CF, Olaru ID, Gallandat K, Leclerc QJ, Fuller NM, Willcocks SJ, Hasan R, van Kleef E, Chandler CI (2021) Antimicrobial resistance and COVID-19: intersections and implications. Elife 10:. https://doi.org/10.7554/elife.64139.
Lai NC-C, Hsueh C-C, Hsu C-K, Tsai Y-W, Hsueh P-R. Disease burden and macrolide resistance of Mycoplasma pneumoniae infection in adults in the Asia-Pacific region. Int J Antimicrob Agents. 2024;64:107205–107205. https://doi.org/10.1016/j.ijantimicag.2024.107205.
Huang Q, Yu Y, Tang C, Peng X. Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2010;1217:3481–8. https://doi.org/10.1016/j.chroma.2010.03.022.
Article PubMed CAS Google Scholar
Chitescu CL, Kaklamanos G, Nicolau AI, Stolker AAM. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Sci Total Environ. 2015;532:501–11. https://doi.org/10.1016/j.scitotenv.2015.06.010.
Article PubMed CAS Google Scholar
De Baere S, Devreese M, Watteyn A, Wyns H, Plessers E, De Backer P, Croubels S. Development and validation of a liquid chromatography–tandem mass spectrometry method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid. J Chromatogr A. 2015;1398:73–82. https://doi.org/10.1016/j.chroma.2015.04.022.
Article PubMed CAS Google Scholar
Szultka-Mlynska M, Pomastowski P, Buszewski B. Application of solid phase microextraction followed by liquid chromatography-mass spectrometry in the determination of antibiotic drugs and their metabolites in human whole blood and tissue samples. J Chromatogr B. 2018;1086:153–65. https://doi.org/10.1016/j.jchromb.2018.04.013.
Chiesa L, Nobile M, Arioli F, Britti D, Trutic N, Pavlovic R, Panseri S. Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry. Food Chem. 2015;185:7–15. https://doi.org/10.1016/j.foodchem.2015.03.098.
Article PubMed CAS Google Scholar
Yan Y, Zhang H, Ai L, Kang W, Lian K, Wang J. Determination of gamithromycin residues in eggs, milk and edible tissue of food-producing animals by solid phase extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2021;1171:122637–122637. https://doi.org/10.1016/j.jchromb.2021.122637.
Yin Z, Chai T, Mu P, Xu N, Song Y, Wang X, Jia Q, Qiu J. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2016;1463:49–59. https://doi.org/10.1016/j.chroma.2016.08.001.
Article PubMed CAS Google Scholar
Li Y, Li Y, Yang Y. Rapid screening of amitraz and its metabolite residues in honey using a quick, easy, cheap, effective, rugged, and safe extraction method coupled with UHPLC and Q Exactive. J Sep Sci. 2020;43:1466–73. https://doi.org/10.1002/jssc.201900801.
Article PubMed CAS Google Scholar
Fedorova G, Randak T, Lindberg RH, Grabic R. Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater. Rapid Commun Mass Spectrom. 2013;27:1751–62. https://doi.org/10.1002/rcm.6628.
Article PubMed CAS Google Scholar
Blaga G-V, Chițescu CL, Lisă EL, Dumitru C, Vizireanu C, Borda D. Antifungal residues analysis in various Romanian honey samples analysis by high resolution mass spectrometry. J Environ Sci Health B. 2020;55:484–94. https://doi.org/10.1080/03601234.2020.1724016.
Article PubMed CAS Google Scholar
Wang J, Leung D, Chow W, Chang J, Wong JW. Target screening of 105 veterinary drug residues in milk using UHPLC/ESI Q-Orbitrap multiplexing data independent acquisition. Anal Bioanal Chem. 2018;410:5373–89. https://doi.org/10.1007/s00216-017-0847-z.
Article PubMed CAS Google Scholar
Galarini R, Saluti G, Giusepponi D, Rossi R, Moretti S. Multiclass determination of 27 antibiotics in honey. Food Control. 2014;48:12–24. https://doi.org/10.1016/j.foodcont.2014.03.048.
Zhu F, Wu X, Li F, Wang W, Ji W, Huo Z, Xu Y. Simultaneous determination of 12 antibacterial drugs in cream disinfection products with EMR-Lipid cleanup using ultra-high-performance liquid chromatography tandem mass spectrometry. Anal Methods. 2019;11:4084–92. https://doi.org/10.1039/c9ay00937j.
Zhang C, Zhang Q, Yin Z, Hu J, Chen G, Zheng L, Ma A. Determination of acetylgestagens in animal-derived matrix samples using enhanced matrix removal lipid clean-up in combination with ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2021;1649:462227–462227. https://doi.org/10.1016/j.chroma.2021.462227.
Article PubMed CAS Google Scholar
Liu Z, Li K, Wang Q, Liu C, Wang B, Hou R, Diao Y, Wang J, Du X-D, Qu L. Isotopic internal standard correction for the determination of diludine residue in animal-derived matrix samples using enhanced matrix removal-lipid clean-up combined with ultra-performance liquid chromatography-tandem mass spectrometry. Microchem J. 2023;195: 109395. https://doi.org/10.1016/j.microc.2023.109395.
Imran M, Raza A, Faisal Usman H, Mubasher M, Din NU, Amir Nadeem M, Irfan Ashiq M, Amjad M, Tahir MA (2023) Enhanced Matrix Removal-Lipid (EMR-L): a novel approach for efficient clean-up in systemic toxicological analysis of drugs and pesticides. Aust J Forensic Sci 1–15. https://doi.org/10.1080/00450618.2023.2261497.
Han L, Matarrita J, Sapozhnikova Y, Lehotay SJ. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. J Chromatogr A. 2016;1449:17–29.
留言 (0)