Development and application of a LC-HRMS method for simultaneous determination of ten illicit antifungal drugs in herbal bacteriostatic products

Vitiello A, Ferrara F, Boccellino M, Ponzo A, Cimmino C, Comberiati E, Zovi A, Clemente S, Sabbatucci M. Antifungal drug resistance: an emergent health threat. Biomedicines. 2023;11:1063. https://doi.org/10.3390/biomedicines11041063.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–92. https://doi.org/10.1016/s1473-3099(17)30316-x.

Article  PubMed  Google Scholar 

Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2011;125:S3–13. https://doi.org/10.1016/j.amjmed.2011.11.001.

Article  CAS  Google Scholar 

Yu JS, Kim JH, Lee S, Jung K, Kim KH, Cho JY. Src/Syk-targeted anti-inflammatory actions of triterpenoidal saponins from gac (Momordica cochinchinensis) seeds. Am J Chin Med. 2017;45:459–73. https://doi.org/10.1142/s0192415x17500288.

Article  PubMed  CAS  Google Scholar 

Móricz ÁM, Fornal E, Jesionek W, Majer-Dziedzic B, Choma IM. Effect-directed isolation and identification of antibacterial Chelidonium majus L. alkaloids. Chromatographia. 2015;78:707–16. https://doi.org/10.1007/s10337-015-2870-6.

Article  CAS  Google Scholar 

Olchowik-Grabarek E, Swiecicka I, Andreeva-Kovaleskaya Z, Solonin A, Bonarska-Kujawa D, Kleszczyńska H, Mavlyanov S, Zamaraeva M. Role of structural changes induced in biological membranes by hydrolysable tannins from sumac leaves (Rhus typhina L.) in their antihemolytic and antibacterial effects. J Membr Biol. 2014;247:533–40. https://doi.org/10.1007/s00232-014-9664-x.

Article  PubMed  CAS  Google Scholar 

Desta KT, Kim G-S, Hong GE, Kim Y-H, Lee WS, Lee SJ, Jin JS, Abd El-Aty AM, Shin H-C, Shim J-H, Shin SC. Dietary-flavonoid-rich flowers of Rumex nervosus Vahl: liquid chromatography with electrospray ionization tandem mass spectrometry profiling and in vitro anti-inflammatory effects. J Sep Science. 2015;38:3345–53. https://doi.org/10.1002/jssc.201500737.

Article  CAS  Google Scholar 

Shu CJ, LiZ H, Shan CY, Nie W, Zhang WM, Ma SH (2020) Research on the application development of plant bacteriostasis in disinfectants. 147–152. https://doi.org/10.16054/j.cnki.cci.2020.z1.026.

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55. https://doi.org/10.1016/s0140-6736(21)02724-0.

Article  CAS  Google Scholar 

Mose KF, Bygum A. Chinese herbal remedy found to contain steroids and antifungals. Lancet. 2019;393:446–446. https://doi.org/10.1016/s0140-6736(19)30116-3.

Article  PubMed  Google Scholar 

Baidu baike (2021) Infant with macrocephaly. https://baike.baidu.com/item/%E5%A4%A7%E5%A4%B4%E5%A8%83%E5%A8%83/50055406.

Lai C-C, Chen S-Y, Ko W-C, Hsueh P-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57: 106324. https://doi.org/10.1016/j.ijantimicag.2021.106324.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Knight GM, Glover RE, McQuaid CF, Olaru ID, Gallandat K, Leclerc QJ, Fuller NM, Willcocks SJ, Hasan R, van Kleef E, Chandler CI (2021) Antimicrobial resistance and COVID-19: intersections and implications. Elife 10:. https://doi.org/10.7554/elife.64139.

Lai NC-C, Hsueh C-C, Hsu C-K, Tsai Y-W, Hsueh P-R. Disease burden and macrolide resistance of Mycoplasma pneumoniae infection in adults in the Asia-Pacific region. Int J Antimicrob Agents. 2024;64:107205–107205. https://doi.org/10.1016/j.ijantimicag.2024.107205.

Article  CAS  Google Scholar 

Huang Q, Yu Y, Tang C, Peng X. Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2010;1217:3481–8. https://doi.org/10.1016/j.chroma.2010.03.022.

Article  PubMed  CAS  Google Scholar 

Chitescu CL, Kaklamanos G, Nicolau AI, Stolker AAM. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Sci Total Environ. 2015;532:501–11. https://doi.org/10.1016/j.scitotenv.2015.06.010.

Article  PubMed  CAS  Google Scholar 

De Baere S, Devreese M, Watteyn A, Wyns H, Plessers E, De Backer P, Croubels S. Development and validation of a liquid chromatography–tandem mass spectrometry method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid. J Chromatogr A. 2015;1398:73–82. https://doi.org/10.1016/j.chroma.2015.04.022.

Article  PubMed  CAS  Google Scholar 

Szultka-Mlynska M, Pomastowski P, Buszewski B. Application of solid phase microextraction followed by liquid chromatography-mass spectrometry in the determination of antibiotic drugs and their metabolites in human whole blood and tissue samples. J Chromatogr B. 2018;1086:153–65. https://doi.org/10.1016/j.jchromb.2018.04.013.

Article  CAS  Google Scholar 

Chiesa L, Nobile M, Arioli F, Britti D, Trutic N, Pavlovic R, Panseri S. Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry. Food Chem. 2015;185:7–15. https://doi.org/10.1016/j.foodchem.2015.03.098.

Article  PubMed  CAS  Google Scholar 

Yan Y, Zhang H, Ai L, Kang W, Lian K, Wang J. Determination of gamithromycin residues in eggs, milk and edible tissue of food-producing animals by solid phase extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2021;1171:122637–122637. https://doi.org/10.1016/j.jchromb.2021.122637.

Article  CAS  Google Scholar 

Yin Z, Chai T, Mu P, Xu N, Song Y, Wang X, Jia Q, Qiu J. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2016;1463:49–59. https://doi.org/10.1016/j.chroma.2016.08.001.

Article  PubMed  CAS  Google Scholar 

Li Y, Li Y, Yang Y. Rapid screening of amitraz and its metabolite residues in honey using a quick, easy, cheap, effective, rugged, and safe extraction method coupled with UHPLC and Q Exactive. J Sep Sci. 2020;43:1466–73. https://doi.org/10.1002/jssc.201900801.

Article  PubMed  CAS  Google Scholar 

Fedorova G, Randak T, Lindberg RH, Grabic R. Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater. Rapid Commun Mass Spectrom. 2013;27:1751–62. https://doi.org/10.1002/rcm.6628.

Article  PubMed  CAS  Google Scholar 

Blaga G-V, Chițescu CL, Lisă EL, Dumitru C, Vizireanu C, Borda D. Antifungal residues analysis in various Romanian honey samples analysis by high resolution mass spectrometry. J Environ Sci Health B. 2020;55:484–94. https://doi.org/10.1080/03601234.2020.1724016.

Article  PubMed  CAS  Google Scholar 

Wang J, Leung D, Chow W, Chang J, Wong JW. Target screening of 105 veterinary drug residues in milk using UHPLC/ESI Q-Orbitrap multiplexing data independent acquisition. Anal Bioanal Chem. 2018;410:5373–89. https://doi.org/10.1007/s00216-017-0847-z.

Article  PubMed  CAS  Google Scholar 

Galarini R, Saluti G, Giusepponi D, Rossi R, Moretti S. Multiclass determination of 27 antibiotics in honey. Food Control. 2014;48:12–24. https://doi.org/10.1016/j.foodcont.2014.03.048.

Article  CAS  Google Scholar 

Zhu F, Wu X, Li F, Wang W, Ji W, Huo Z, Xu Y. Simultaneous determination of 12 antibacterial drugs in cream disinfection products with EMR-Lipid cleanup using ultra-high-performance liquid chromatography tandem mass spectrometry. Anal Methods. 2019;11:4084–92. https://doi.org/10.1039/c9ay00937j.

Article  CAS  Google Scholar 

Zhang C, Zhang Q, Yin Z, Hu J, Chen G, Zheng L, Ma A. Determination of acetylgestagens in animal-derived matrix samples using enhanced matrix removal lipid clean-up in combination with ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2021;1649:462227–462227. https://doi.org/10.1016/j.chroma.2021.462227.

Article  PubMed  CAS  Google Scholar 

Liu Z, Li K, Wang Q, Liu C, Wang B, Hou R, Diao Y, Wang J, Du X-D, Qu L. Isotopic internal standard correction for the determination of diludine residue in animal-derived matrix samples using enhanced matrix removal-lipid clean-up combined with ultra-performance liquid chromatography-tandem mass spectrometry. Microchem J. 2023;195: 109395. https://doi.org/10.1016/j.microc.2023.109395.

Article  CAS  Google Scholar 

Imran M, Raza A, Faisal Usman H, Mubasher M, Din NU, Amir Nadeem M, Irfan Ashiq M, Amjad M, Tahir MA (2023) Enhanced Matrix Removal-Lipid (EMR-L): a novel approach for efficient clean-up in systemic toxicological analysis of drugs and pesticides. Aust J Forensic Sci 1–15. https://doi.org/10.1080/00450618.2023.2261497.

Han L, Matarrita J, Sapozhnikova Y, Lehotay SJ. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. J Chromatogr A. 2016;1449:17–29.

留言 (0)

沒有登入
gif