Tumor Suppressor miR-34a: Potential Biomarker of TACE Response in HCC

Yang ZF, Poon RTP. Vascular changes in hepatocellular carcinoma. Anat Rec (Hoboken). 2008;291:721–34. https://doi.org/10.1002/ar.20668.

Article  CAS  PubMed  Google Scholar 

Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27:1859–67. https://doi.org/10.1128/MCB.01395-06.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation. 2012;19:215–23. https://doi.org/10.1111/j.1549-8719.2011.00154.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283:15878–83. https://doi.org/10.1074/jbc.M800731200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14:1340–8. https://doi.org/10.1158/1078-0432.CCR-07-1755.

Article  CAS  PubMed  Google Scholar 

Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87. https://doi.org/10.1016/j.cell.2011.08.039.

Article  CAS  PubMed  Google Scholar 

Bozzato AM, Martingano P, PozziMucelli RA, et al. MicroRNAs related to TACE treatment response: a review of the literature from a radiological point of view. Diagnostics (Basel). 2022;12:374. https://doi.org/10.3390/diagnostics12020374.

Article  CAS  PubMed  Google Scholar 

Kaller M, Liffers S-T, Oeljeklaus S, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(M111):010462. https://doi.org/10.1074/mcp.M111.010462.

Article  CAS  Google Scholar 

Farooqi AA, Tabassum S, Ahmad A. MicroRNA-34a: a versatile regulator of myriads of targets in different cancers. Int J Mol Sci. 2017;18:2089. https://doi.org/10.3390/ijms18102089.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi K, Sun H, Zhang H, et al. miR-34a-5p aggravates hypoxia-induced apoptosis by targeting ZEB1 in cardiomyocytes. Biol Chem. 2019;400:227–36. https://doi.org/10.1515/hsz-2018-0195.

Article  CAS  PubMed  Google Scholar 

Liu J, Zhu H, Yang X, et al. MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumor Biol. 2014;35:3975–9. https://doi.org/10.1007/s13277-014-1623-8.

Article  CAS  Google Scholar 

Lendvai G, Szekerczés T, Gyöngyösi B, et al. MicroRNA expression in focal nodular hyperplasia in comparison with cirrhosis and hepatocellular carcinoma. Pathol Oncol Res. 2019;25:1103–9. https://doi.org/10.1007/s12253-018-0528-z.

Article  CAS  PubMed  Google Scholar 

Wiggermann P, Wohlgemuth WA, Heibl M, et al. Dynamic evaluation and quantification of microvascularization during degradable starch microspheres transarterial chemoembolisation (DSM-TACE) of HCC lesions using contrast enhanced ultrasound (CEUS): a feasibility study. Clin Hemorheol Microcirc. 2013;53:337–48. https://doi.org/10.3233/CH-2012-1555.

Article  CAS  PubMed  Google Scholar 

Ebert M, Ebert J, Berger G. Intravital microscopic research of microembolization with degradable starch microspheres. J Drug Deliv. 2013;2013:242060. https://doi.org/10.1155/2013/242060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrasina T, Juracek J, Zavadil J, et al. Thermal ablation and transarterial chemoembolization are characterized by changing dynamics of circulating MicroRNAs. J Vasc Interv Radiol. 2021;32:403–11. https://doi.org/10.1016/j.jvir.2020.10.024.

Article  PubMed  Google Scholar 

Zavadil J, Juráček J, Čechová B, et al. Dynamic changes in circulating MicroRNA levels in liver cancer patients undergoing thermal ablation and transarterial chemoembolization. Klin Onkol. 2019;32:164–6.

CAS  PubMed  Google Scholar 

Schicho A, Hellerbrand C, Krüger K, Beyer LP, Wohlgemuth W, Niessen C, Hohenstein E, Stroszczynski C, Pereira PL, Wiggermann P. Impact of different embolic agents for transarterial chemoembolization (TACE) procedures on systemic vascular endothelial growth factor (VEGF) levels. J Clin Transl Hepatol. 2016;4(4):288.

Article  PubMed  PubMed Central  Google Scholar 

Stechele M, Link H, Hirner-Eppeneder H, et al. Circulating miR-21 as a prognostic biomarker in HCC treated by CT-guided high-dose rate brachytherapy. Radiat Oncol. 2023;18:125. https://doi.org/10.1186/s13014-023-02316-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhan M, Li Y, Hu B, et al. Serum microRNA-210 as a predictive biomarker for treatment response and prognosis in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol. 2014;25:1279-1287.e1. https://doi.org/10.1016/j.jvir.2014.04.013.

Article  PubMed  Google Scholar 

Jia Z, Jiang G, Feng Y. Serum HIF-1alpha and VEGF levels pre- and post-TACE in patients with primary liver cancer. Chin Med Sci J. 2011;26:158–62. https://doi.org/10.1016/s1001-9294(11)60041-2.

Article  CAS  PubMed  Google Scholar 

Shim JH, Park J-W, Kim JH, et al. Association between increment of serum VEGF level and prognosis after transcatheter arterial chemoembolization in hepatocellular carcinoma patients. Cancer Sci. 2008;99:2037–44. https://doi.org/10.1111/j.1349-7006.2008.00909.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chao Y, Wu C-Y, Kuo C-Y, et al. Cytokines are associated with postembolization fever and survival in hepatocellular carcinoma patients receiving transcatheter arterial chemoembolization. Hepatol Int. 2013;7:883–92. https://doi.org/10.1007/s12072-012-9409-9.

Article  PubMed  Google Scholar 

Poon RT-P, Lau C, Yu W-C, et al. High serum levels of vascular endothelial growth factor predict poor response to transarterial chemoembolization in hepatocellular carcinoma: a prospective study. Oncol Rep. 2004;11:1077–84.

CAS  PubMed  Google Scholar 

Hsieh M-Y, Lin Z-Y, Chuang W-L. Serial serum VEGF-A, angiopoietin-2, and endostatin measurements in cirrhotic patients with hepatocellular carcinoma treated by transcatheter arterial chemoembolization. Kaohsiung J Med Sci. 2011;27:314–22. https://doi.org/10.1016/j.kjms.2011.03.008.

Article  CAS  PubMed  Google Scholar 

Pelizzaro F, Cardin R, Sartori A, et al. Circulating MicroRNA-21 and MicroRNA-122 as prognostic biomarkers in hepatocellular carcinoma patients treated with transarterial chemoembolization. Biomedicines. 2021;9:890. https://doi.org/10.3390/biomedicines9080890.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui X, Wu Y, Wang Z, et al. MicroRNA-34a expression is predictive of recurrence after radiofrequency ablation in early hepatocellular carcinoma. Tumour Biol. 2015;36:3887–93. https://doi.org/10.1007/s13277-014-3031-5.

Article  CAS  PubMed  Google Scholar 

Canale M, Foschi FG, Andreone P, et al. Role of circulating microRNAs to predict hepatocellular carcinoma recurrence in patients treated with radiofrequency ablation or surgery. HPB. 2022;24:244–54. https://doi.org/10.1016/j.hpb.2021.06.421.

Article  PubMed  Google Scholar 

Chen S, Mao Y, Chen W, et al. Serum exosomal miR-34a as a potential biomarker for the diagnosis and prognostic of hepatocellular carcinoma. J Cancer. 2022;13:1410–7. https://doi.org/10.7150/jca.57205.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif