Association between 25(OH) vitamin D and multiple sclerosis: cohort, shared genetics, and Causality

Gandhi F, Jhaveri S, Avanthika C, Singh A, Jain N, Gulraiz A, Shah P, Nasir F. Impact of vitamin D supplementation on multiple sclerosis. Cureus 2021, 13 (10), e18487.

Compston A, Coles A. Multiple sclerosis. Lancet (London England). 2008;372(9648):1502–17.

Article  CAS  PubMed  Google Scholar 

Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Reviews Neurol. 2014;10(4):225–38.

Article  CAS  Google Scholar 

Wessels I, Rink L. Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem. 2020;77:108240.

Article  CAS  PubMed  Google Scholar 

Simpson S Jr., Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(10):1132–41.

Article  PubMed  Google Scholar 

Vukusic S, Van Bockstael V, Gosselin S, Confavreux C. Regional variations in the prevalence of multiple sclerosis in French farmers. J Neurol Neurosurg Psychiatry. 2007;78(7):707–9.

Article  PubMed  PubMed Central  Google Scholar 

Melcon MO, Gold L, Carrá A, Cáceres F, Correale J, Cristiano E, Fernández Liguori N, Garcea O, Luetic G, Kremenchutzky M. Argentine Patagonia: prevalence and clinical features of multiple sclerosis. Mult Scler. 2008;14(5):656–62.

Article  CAS  PubMed  Google Scholar 

Poppe AY, Wolfson C, Zhu B. Prevalence of multiple sclerosis in Canada: a systematic review. Can J Neurol Sci. 2008;35(5):593–601.

Article  PubMed  Google Scholar 

Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–32.

Article  PubMed  Google Scholar 

Jacobs BM, Noyce AJ, Giovannoni G, Dobson R. BMI and low vitamin D are causal factors for multiple sclerosis: a mendelian randomization study. Neurology(R) Neuroimmunol Neuroinflammation 2020, 7 (2).

Wang R. Mendelian randomization study updates the effect of 25-hydroxyvitamin D levels on the risk of multiple sclerosis. J Translational Med. 2022;20(1):3.

Article  Google Scholar 

Fang A, Zhao Y, Yang P, Zhang X, Giovannucci EL. Vitamin D and human health: evidence from mendelian randomization studies. Eur J Epidemiol. 2024;39(5):467–90.

Article  PubMed  Google Scholar 

Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Goltzman D, Leong A, Greenwood CM, Thanassoulis G, Richards JB. Vitamin D and risk of multiple sclerosis: a mendelian randomization study. PLoS Med 2015, 12 (8), e1001866.

Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8.

Article  CAS  PubMed  Google Scholar 

Munger KL, Zhang SM, O’Reilly E, Hernán MA, Olek MJ, Willett WC, Ascherio A. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62(1):60–5.

Article  CAS  PubMed  Google Scholar 

Hajeer S, Nasr F, Nabha S, Saab MB, Harati H, Desoutter A, Al Ahmar E, Estephan E. Association between vitamin D deficiency and multiple sclerosis- MRI significance: a scoping review. Heliyon 2023, 9 (5), e15754.

Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB. The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol. 2022;18(2):96–110.

Article  CAS  PubMed  Google Scholar 

Ramagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment DA, Deluca GC, Herrera BM, Chao MJ, Sadovnick AD, Ebers GC, Knight JC. Expression of the multiple sclerosis-associated MHC class II allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet 2009, 5 (2), e1000369.

Sîrbe C, Rednic S, Grama A, Pop TL. An update on the effects of vitamin D on the Immune System and Autoimmune diseases. Int J Mol Sci. 2022;23:17.

Article  Google Scholar 

Smolders J, Torkildsen Ø, Camu W, Holmøy T. An update on Vitamin D and disease activity in multiple sclerosis. CNS Drugs. 2019;33(12):1187–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heaney RP. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr Rev. 2014;72(1):48–54.

Article  PubMed  Google Scholar 

Multiple sclerosis genomic. Map implicates peripheral immune cells and microglia in susceptibility. Sci (New York N Y). 2019;365:6460.

Google Scholar 

Low-Frequency. Rare-coding variation contributes to multiple sclerosis risk. Cell. 2018;175(6):1679–e16877.

Article  Google Scholar 

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015, 12 (3), e1001779.

Manousaki D, Mitchell R, Dudding T, Haworth S, Harroud A, Forgetta V, Shah RL, Luan J, Langenberg C, Timpson NJ, Richards JB. Genome-wide Association Study for Vitamin D Levels Reveals 69 independent loci. Am J Hum Genet. 2020;106(3):327–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, Duncan L, Perry JR, Patterson N, Robinson EB, Daly MJ, Price AL, Neale BM. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

Article  PubMed  Google Scholar 

The Genotype-Tissue. Expression (GTEx) project. Nat Genet. 2013;45(6):580–5.

Article  Google Scholar 

Open-source ImmGen.: mononuclear phagocytes. Nat Immunol. 2016;17(7):741.

Article  Google Scholar 

Ray D, Chatterjee N. A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between type 2 diabetes and prostate Cancer. PLoS Genet 2020, 16 (12), e1009218.

de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 2015, 11 (4), e1004219.

Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8(1):1826.

Article  PubMed  PubMed Central  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, Sul JH, Sankararaman S, Pasaniuc B, Eskin E. Colocalization of GWAS and eQTL signals detects Target genes. Am J Hum Genet. 2016;99(6):1245–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG. Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.

Article  PubMed  Google Scholar 

Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999;18(20):2693–708.

Article  CAS  PubMed  Google Scholar 

Burgess S, Thompson SG. Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol 2017, 32 (5), 377–89.

Yu X, Wang T, Huang S, Zeng P. Evaluation of the causal effects of blood lipid levels on gout with summary level GWAS data: two-sample mendelian randomization and mediation analysis. J Hum Genet. 2021;66(5):465–73.

Article  CAS  PubMed  Google Scholar 

Auwerx C, Sadler MC, Woh T, Reymond A, Kutalik Z, Porcu E. Exploiting the mediating role of the metabolome to unravel transcript-to-phenotype associations. eLife 2023, 12.

Broadbent JR, Foley CN, Grant AJ, Mason AM, Staley JR, Burgess S. MendelianRandomization v0.5.0: updates to an R package for performing mendelian randomization analyses using summarized data. Wellcome open Res. 2020;5:252.

Article  PubMed  PubMed Central  Google Scholar 

Rhead B, Bäärnhielm M, Gianfrancesco M, Mok A, Shao X, Quach H, Shen L, Schaefer C, Link J, Gyllenberg A, Hedström AK, Olsson T, Hillert J, Kockum I, Glymour MM, Alfredsson L, Barcellos LF. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol Genet 2016, 2 (5), e97.

Gianfrancesco MA, Stridh P, Rhead B, Shao X, Xu E, Graves JS, Chitnis T, Waldman A, Lotze T, Schreiner T, Belman A, Greenberg B, Weinstock-Guttman B, Aaen G, Tillema JM, Hart J, Caillier S, Ness J, Harris Y, Rubin J, Candee M, Krupp L, Gorman M, Benson L, Rodriguez M, Mar S, Kahn I, Rose J, Roalstad S, Casper TC, Shen L, Quach H, Quach D, Hillert J, Bäärnhielm M, Hedstrom A, Olsson T, Kockum I, Alfredsson L, Metayer C, Schaefer C, Barcellos LF, Waubant E. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology. 2017;88(17):1623–9.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif